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Problem 2. Number of Residues

Abstract

This problem is about calculating the cardinal of the value set over modulo

(V n
f ) of integer-valued polynomials and in particular the value set of triangular

numbers. At the beginning of the paper we studied some properties of integer-

valued polynomials. Next we provided the exact formula to calculate the value

set of arbitrary integer-valued polynomial (question 4), and proved that #V n
f is

a multiplicative with respect to modulo function.

Thus we have the formula to compute the value set, in practice it’s very

complex and need too much calculations, and using formula we can’t find the

value set itself, so we also investigated more efficient algorithms to find and hence

compute the value set. Also we studied bounds for the value set.

In some particular cases of polynomials we can find explicit formulas for

#V n
f . We provided such formulas for monomials, arbitrary linear and quadratic

polynomials over arbitrary modulo (which in particular solved questions 1 - 3).

In the last part we considered generalizations of the problem, we investigated

rational functions taking integer values in integer points and linear functions of

several variables.
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Definitions and initial statement

The initial statement of the problem was the following:

• Questions 1-3. Calculate the value set of triangular numbers f(x) = x(x+1)
2

over modulo.

• Question 4. Calculate the value set of arbitrary integer-valued polynomial over
modulo.

• Question 5. Suggest and investigate related problems.

For comfort we’ll have some definitions:

Definition 1. Denote by V n
f the set of values that function f may take over modulo n

and #V n
f is the cardinality of V n

f .

Definition 2. Denote by Snf number of solutions to the congruence f(x) ≡ 0
(mod n).

Definition 3. Let Int(Z) be the set of all polynomials with real coefficients taking
integer values in any integer point.

1 Introduction

In this section we study properties of integer-valued polynomials and properties of
value set cardinality needed for further research.

1.1 Classification of integer-valued polynomials

Theorem 1. Every polynomial f ∈ Int(Z) can be represented in the form

f(x) =
m∑
k=0

tk

(
x

k

)
where m = deg f and tk ∈ Z. �

It’s easy to see that polynomials
(
x
k

)
are integer-valued. Since there exists exactly

one polynomial
(
x
k

)
of each degree, then any polynomial from R[x] and the more from

Int(Z) can be represented in form:

f(x) =
m∑
i=0

ti

(
x

i

)
= tm

(
x

m

)
+ · · ·+ t1

(
x

1

)
+ t0, (1)

where ti ∈ R and m = deg f .
Show by induction on k that if f ∈ Int(Z) then tk ∈ Z. We have f(0) = t0 ∈ Z.

Suppose ti ∈ Z holds for all i ≤ k. Then f(k + 1) =
∑m

i=0 ti
(
k+1
i

)
. For i > k + 1

there holds
(
k+1
i

)
= 0, hence f(k + 1) =

∑k+1
i=0 ti

(
k+1
i

)
= tk+1 +

∑k
i=0 ti

(
k+1
i

)
∈ Z. As

f(k + 1) ∈ Z and
∑k

i=0 ti
(
k+1
i

)
∈ Z we have tk+1 ∈ Z. �
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1.2 Properties of integer-valued polynomials

Proposition 1.1. Integer-valued polynomial f ∈ Int(Z) of degree d = deg f takes
all possible values modulo n on numbers 0, 1, . . . , nd!− 1.

� To prove it show that f(x) ≡ f(x + nd!) (mod n). From theorem 1 there holds
f = td

(
x
d

)
+ · · ·+ t1

(
x
1

)
+ t0 for some integer ti. Consider the difference

f(x+ nd!)− f(x) =

= td

(
x+ nd!

d

)
− td

(
x

d

)
+ · · ·+ t1

(
x+ nd!

1

)
− t1

(
x

1

)
+ t0(1− 1) = (2)

=
td
d!

(
(x+ nd!)...(x+ nd!− d+ 1)− x(x− 1)...(x− d+ 1)

)
+ · · ·+ t1(x+ nd!− x).

Each summand is of the form ti
i!

(
A − B

)
, where A = (x + nd!)...(x + nd! − i + 1)

and B = x(x − 1)...(x − i + 1). Note that after removing the brackets each element
from B will also be in A multiplied by −1, and each element from A that is not in
B will be multiplied by nd!. Thus ti

i!

(
A − B

)
can be written in the form ti

i!

(
Cnd!

)
=

tiCnd(d− 1)...(d− i+ 1) ≡ 0 (mod n). So f(x+ nd!)− f(x) ≡ 0 (mod n). �

Proposition 1.2. To calculate the cardinal of the value set of f(x) ∈ Int(Z) over
modulo n, it’s the same that to calculate the cardinal of the value set of df(x) with d ∈
Z over modulo dn, where d is the smallest positive integer such that all coefficients of
f are integers (and from theorem 1 follows d | (deg f)!).

2 Exact value for #V n
f

In this section we provide explicit formula to calculate the value set and prove that
#V n

f is multiplicative with respect to modulo function.

2.1 Exact formula

From proposition 1.2 for every integer-valued polynomial there exists a polynomial
with integer coefficients with the same cardinal of the value set. So we consider poly-
nomials with integer coefficients.

Theorem 2. Let f ∈ Z[x] and n ∈ N, then the following holds:

#V n
f = n

n−1∑
u=0

(
n−1∑
v=0

n−1∑
t=0

exp
[
2πi

t

n

(
f(u)− f(v)

)])−1 ∗ (3)

∗brackets [. . .] just for clarity
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� To prove the formula we’ll use basic knowledge of graph theory. It’s clear that
the polynomial takes all it values in points 0, . . . , n− 1. Consider an undirected graph
with vertices as residues modulo n and edge between u and v means f(u) = f(v). Note
that it consists of several connected components and each of them is complete. The
number of components is the cardinality of the value set of f . To calculate the number
of components (i.e. #V n

f ) we can set in each vertex u the value which equal to the
cardinal of component containing u powered −1, thus sum of values will be equal to
#V n

f . Or it can be written as:

#V n
f =

n−1∑
u=0

 ∑
v:f(u)−f(v)=0

1

−1 = n

n−1∑
u=0

 ∑
v:f(u)−f(v)=0

n

−1 (4)

Show that sum
∑

v:f(u)−f(v)=0 n can be rewritten in the form∑n−1
v=0

∑n−1
t=0 exp

[
2πi t

n

(
f(u)− f(v)

)]
. If f(u)−f(v) 6= 0, then exp

[
2πi 1

n

(
f(u)− f(v)

)]
6=

1, thus this sum is sum of first n members of geometric progression with ratio r =

exp
[
2πi 1

n

(
f(u)− f(v)

)]
and first member a = exp

[
2πi 0

n

(
f(u)− f(v)

)]
= e0 = 1.

Hence this sum equals

a
rn − 1

r − 1
=

e2πi
(
f(u)−f(v)

)
− 1

e2πi
1
n

(
f(u)−f(v)

)
− 1

=
[
as
(
f(u)− f(v)

)
is integer

]
= 0 (5)

In case when f(u)− f(v) = 0, exp
[
2πi t

n

(
f(u)− f(v)

)]
= 1 and then∑n−1

t=0 exp
[
2πi t

n

(
f(u)− f(v)

)]
= n. Thus we have:

#V n
f = n

n−1∑
u=0

(
n−1∑
v=0

n−1∑
t=0

exp
[
2πi

t

n

(
f(u)− f(v)

)])−1
.�

2.2 Multiplicativity

Theorem 3. Let f(x) ∈ Z[x] and n ∈ N, then #V n
f is multiplicative with respect to

n function.

� By definition #V n
f is defined for every natural n and #V 1

f = 1. Let n = p ∗ q with
(p, q) = 1, show that #V n

f = #V p
f ∗#V q

f . Consider mapping φ : V p
f × V

q
f → Zpq as the

following φ(a, b) = c where c is the solution to the system{
a ≡ c (mod p)
b ≡ c (mod q)

by Chinese remainder theorem there exists exactly one such c. For each pair (a, b), a ∈
V p
f , b ∈ V

q
f there exist x ∈ Zp, y ∈ Zq such that

(
a, b
)

=
(
f(x), f(y)

)
. So by Chinese

remainder theorem there exists z ∈ Zpq which is solution to{
x ≡ z (mod p)
y ≡ z (mod q)
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As f is a polynomial with integer coefficients and f(t) ≡ f(t+m) (mod m) then f(z) ≡
f(x) ≡ a (mod p) and f(z) ≡ f(y) ≡ b (mod q). Therefore f(z) ≡ c (mod pq). So
c ∈ V pq

f = V n
f and φ is a mapping to V n

f .
By Chinese remainder theorem for each c there exists a preimage φ−1(c), so φ is a

surjection and φ((u1, v1)) = φ((u2, v2)) implies (u1, v1) = (u2, v2), so φ is an injection.
Therefore φ is a bijection. Hence #V pq

f = #V p
f ∗ #V q

f , thus #V n
f is a multiplicative

function. �

Corollary 3.1. If n = pα1
1 ∗ · · · ∗ p

αk
k , then to calculate #V n

f it’s enough to calcu-

late #V
p
αi
i

f for all i and multiply the values.

3 Algorithms to find the value set

Despite the fact that theorem 3 provides explicit formula to calculate the value set,
in practice this formula is very complex and for d = deg f and modulo q needs O(d∗q3)
simple operations to be computed. In this section we suggest more efficient ways to
find (and hence calculate) the value set over modulo. From corollary 3.1 we assume
that the value set is calculated over prime power q = pm, which in practice significantly
accelerates algorithms.

3.1 Naive algorithm

Proposition 4. The value set of a polynomial of degree d over modulo q = pm can
be found in O(d ∗ pm).

� This can be done using very simple algorithm. For every x ∈ Zq we calculate the
value of f(x) over modulo q and memorize it. Then for every y ∈ Zq we check whether
y was memorized. Obviously this algorithm will find the value set. There are O(pm)
in Zpm and each value is calculated in O(d) and memorized and checked in O(1). So
total runtime is O(pm) ∗O(d) +O(pm) ∗O(1) = O(pm ∗ d) +O(pm) = O(d ∗ pm). �

3.2 Lifting algorithm

To provide more efficient algorithm we’ll use a result known as Hensel’s lemma [4]:

Hensel’s lemma. If a ∈ Zpe is a solution to f(x) ≡ 0 (mod pe), then, where f ′(x)

is the derivative of f , this solution lifts to a solution to f(x) ≡ 0 (mod pe+1), depending

on whether p | f ′(a) and pe+1 | f(a):

• if p - f ′(a), then f(x) ≡ 0 (mod pe+1) has the unique solution x ≡ a + tpe

(mod pe+1) where t is unique solution to the linear congruence

tf ′(a) ≡ −f(a)

pe
(mod p);
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• if p | f ′(a) and pe+1 | f(a) then f(x) ≡ 0 (mod pe+1) has p distinct solutions of

the form x ≡ a+ tpe (mod pe+1) with t = 0, . . . , p− 1;

• if p | f ′(a) and pe+1 - f(a) then f(x) ≡ 0 (mod pe+1) has no solutions which

reduce to a (mod pe);

Lemma 5. A polynomial congruence f(x) = adx
d + · · · + a1x + a0 ≡ 0 (mod pm)

can be solved in O
(
p+ Sp

m

f + d
∑m−1

i=1 Sp
i

f

)
.

� The algorithm to solve the congruence have m steps. On step i (counting from 0)
we have the set of solutions to f(x) ≡ 0 (mod pi).

Initially we have one solution x ≡ 0 (mod 1). On first step we try all the numbers
0, . . . , p−1 to be the solution of f(x) ≡ 0 (mod p). On each other step we use Hensel’s
Lifting lemma, and from each solution modulo pi we lift solutions to (mod pi+1).
Finally we’ll have solutions modulo pm.

On each step despite the first for each solution we find solutions by the higher power
of p in O(d) operations, by calculating the values of f and f ′. On first step we have
O(p) operations.

Thus totally there are O
(
p+ Sp

m

f + d
∑m−1

i=1 Sp
i

f

)
operations. �

The algorithm, we provide is more effective than the trivial one for polynomials with
V n
f < min(p, d).
Theorem 6. The value set of a polynomial f of degree d over modulo pm can be

found in O
(
p ∗#V pm

f + #V pm

f ∗ pm + d ∗ pm−1 ∗#V pm

f

)
.

� The idea is not to consider residues, which values are already in the value set.
We’ll have two types of marks for residues of Zpm , mark of first type to show that a is
in the value set, and mark of second type to show that we have no need to consider a.

Let step over all elements of Zpm from 0 to pm − 1. Suppose a is considered. If a is
marked with second type mark, we skip a and go to the next step.

If a is not marked, we make a mark of first type on f(a), to memorize that f(a) is in
the value set. Then we solve polynomial congruence f(x)−f(a) ≡ 0 (mod pm). Roots
of the congruence if the elements of Zpm which have the same value as f(a) (including
a itself). So we mark all the roots with the second mark and go to the next step.

In the end of the algorithm the value set if numbers marked with first-type mark.
Totally the algorithm have pm steps. And there are #V pm

f steps which is not skipped
(i.e. not in O(1)). On each such step we calculate the value of f which is O(d) and

we solve the congruence, which is O
(
p + Sp

m

g + d
∑m−1

i=1 Sp
i

f

)
. As we consider every

value from the value set only one time, sum of all considered roots of congruences Sp
m

g

is O(pm). In the sum
∑m−1

i=1 Sp
i

f there holds Sp
i

f ≤ pi, hence sum of all such sums is

O(#V pm

f

∑m−1
i=1 pi) = #V pm

f ∗ pm−1). Thus total asymptotic is

O
(
#V pm

f ∗ p+
∑
t∈V p

m

f

Sp
m

f(x)−f(t) + d ∗#V pm

f ∗ pm−1
)

=

O
(
p ∗#V pm

f + #V pm

f ∗ pm + d ∗ pm−1 ∗#V pm

f

)
.�
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4 Bounds for #V n
f

4.1 Bounds for product of primes

Proposition 7. For f(x) ∈ Fp[x], d = deg f there holds p
d
≤ #V p

f ≤ p.

� It’s clear that #V p
f ≤ p since there p elements in the field.

As Fp is a field a polynomial in Fp[x] of degree deg f = d can have at most d roots.
So for every α ∈ V p

f there exist at most d such β that f(β) = α. And as all such roots
β to f(β) = α for all α ∈ V p

f form the field, we have:

p ≤ #V p
f ∗ d ⇐⇒ #V p

f ≥
p

d
.� (6)

Corollary 7.1. Since #V n
f is multiplicative function then for modulo equal product

of primes n = p1 ∗ p2 ∗ · · · ∗ pk there holds:

p1 ∗ p2 ∗ · · · ∗ pk
dk

≤ #V n
f ≤ n.

5 Particular cases

In this part we obtain better or more explicit results for #V q
f in some particular

cases of polynomials. Using proposition 1.2 we suppose that polynomial f have integer
coefficients, and using corollary 3.1 we suppose that modulo is power of prime q = pm.

Lemma 8. Linear transformation g(x) = ax+ b maps set of residues T ⊂ Zm into
the set with the same cardinal, if (a,m) = 1.

� It’s enough to show that g(x) are different for all x ∈ T . Assume a contrary,
let there exist u and v, such that u 6≡ v (mod m) and g(u) ≡ g(v) (mod m). Then
we have: au + b ≡ av + b (mod m) ⇐⇒ au ≡ av (mod m). As (a,m) = 1 by
Euler’s theorem there exists element a−1. Hence a−1au ≡ a−1av (mod m) ⇐⇒ u ≡ v
(mod m) which is false by assumption, therefore assumption is wrong. �

Corollary 8.1. For linear transformation g(x) = ax+ b with (a,m) = 1 there holds
V m
f◦g = V m

f , since the set of residues is mapped into itself.

5.1 Monomials

Theorem 9. Let f(x) = xd, and p ≥ 3 be a prime, m ∈ N and 1 ≤ k ≤ d and
k ≡ m (mod d), then

#V pm

f =
(p− 1)

(d, (p− 1)pk+d−1)

(
pk+d−1

(
pdb

m−1
d c − 1

pd − 1

))
+

(p− 1)pk−1

(d, (p− 1)pk−1)
+ 1 (7)
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� Consider congruence xd ≡ a (mod pm). Let g be some primitive root over modulo
pm, since p is a prime ≥ 3 such primitive root exists [1]. If (a, pm) = 1 then there exists
a number indga, such that gindga = a. Hence

indgx
d ≡ indga (mod ϕ(pm)) ⇐⇒ d indgx ≡ indga (mod ϕ(pm)) (8)

Solution to this congruence exists if and only if
(
d, ϕ(pm)

)
| indga. Clearly there

exist exactly
ϕ(pm)(
d, ϕ(pm)

)
such numbers. So f(x) = xd takes exactly ϕ(pm)(

d,ϕ(pm)
) values which are coprime to pm.

Consider values which are not coprime to pm. Let m > d and xd ≡ t (mod pm), with

t
... p. Then x

... p ⇐⇒ xd
... pd ⇐⇒ t

... pd. Hence the congruence xd ≡ t (mod pm) has
the same number of solutions that the congruence (x′)d ≡ t′ (mod pm−d).

Let m ≤ d and xd ≡ t (mod pm), with t
... p. Then x

... p ⇐⇒ xd
... pd ⇐⇒ t

... pd ⇐⇒
t ≡ 0 (mod pm). So in these case there exists exactly one number from value set which
is divided by p. Therefore we can calculate #V pm

f recursively

#V pm

f =
ϕ(pm)

(d, ϕ(pm))
+ #V pm−d

f (9)

for m > d with initial values #V pm

f = ϕ(pm)
(d,ϕ(pm))

+ 1 for d ≤ m.

Let 1 ≤ k ≤ d and k ≡ m (mod d). Note that (d, pt) = (d, pt+d) holds when t ≥ d.

#V pm

f =
ϕ(pm)

(d, ϕ(pm))
+

ϕ(pm−d)

(d, ϕ(pm−d))
+ · · ·+ ϕ(pk+d)

(d, ϕ(pk+d))
+

ϕ(pk)

(d, ϕ(pk))
+ 1 =

=
(p− 1)pm−1

(d, (p− 1)pm−1)
+

(p− 1)pm−d−1

(d, (p− 1)pm−d−1)
+ · · ·+ (p− 1)pk−1

(d, (p− 1)pk−1)
+ 1 = (10)

=
(p− 1)

(d, (p− 1)pk+d−1)

(
pm−1 + pm−d−1 + · · ·+ pk+d−1

)
+

(p− 1)pk−1

(d, (p− 1)pk−1)
+ 1.

Easily to see that sum
(
pm−1 + pm−d−1 + · · ·+ pk+d−1

)
has

⌊
m
d

⌋
elements if d - m

and
⌊
m
d

⌋
− 1 if d | m, and in general it can be written as

⌊
m−1
d

⌋
. Then, since the sum

is a geometric progression, for that sum with initial value pk+d−1 and coefficient pd,
hence:

#V pm

f =
(p− 1)

(d, (p− 1)pk+d−1)

(
pk+d−1

(
pd∗b

m−1
d c − 1

pd − 1

))
+

(p− 1)pk−1

(d, (p− 1)pk−1)
+ 1.� (11)

5.2 Linear polynomials

Consider polynomial f(x) = ax+ b over modulo q = pm. Using lemma 8 we assume
that b = 0. Then two cases are possible:

• if (a, q) = 1, then using lemma 8 we have #V q
f = q

9



• if (a, q) = g > 1, then we can divide both modulo and coefficients of f and go to

the first case #V q
f = #V

q/g
f/g = q/g

Proposition 10. If f(x) = ax+ b, with a, b ∈ Z then #V q
f = q

(a,q)
.

5.3 Quadratic polynomials

Consider polynomial f(x) = ax2+bx+c with integer coefficients over modulo q = pm.
Analogously to the case of linear polynomials we assume that c = 0 and (a, b, pm) = 1.

Theorem 11. Let f(x) = ax2 + bx ∈ Z[x], q = pm then #V q
f can be calculated in

following way:

• if p = 2

– #V q
f = 2m, if a is even and b is odd;

– #V q
f = 2m−1, if both a and b are odd;

– #V q
f =

⌊
2m

6

⌋
+ 2, if a is odd and b is even;

• if p ≥ 3

– #V q
f = pm, if a is divided by p;

– #V q
f =

⌊
pm+1

2(p+1)

⌋
+ 1 otherwise;

� Let q = pm with arbitrary prime p.
Consider case, when a ≡ 0 (mod p). Show that all values of f(x) for x = 0, 1, . . . , pm−

1 are distinct. Suppose a contrary, let there exist such u and v, that f(u) ≡ f(v)
(mod q) and u 6≡ v (mod q). Then

au2 + bu ≡ av2 + bv (mod pm) ⇐⇒ a(u+ v)(u− v) ≡ −b(u− v) (mod pm) (12)

Right part of the congruence isn’t congruent to 0. And as a is divided by p, p divides
left part in greater power then the right one. Hence they can’t be equal and all values
of f(x) are distinct and therefore #V q

f = pm. This proves cases p ≥ 3, with a divided
by p and p = 2, with even a and odd b.

In the next part let p = 2.
Suppose, that both a and b are odd. Note that for both odd and even x f(x) is

always even, so V q
f ≤ 2m−1. Show that all values of f(x) for odd x = 1, . . . , 2m−1

are distinct. Suppose a contrary, let there exist such odd u and v, that f(u) ≡ f(v)
(mod q) and u 6≡ v (mod q). Then

a(u+ v)(u− v) ≡ −b(u− v) (mod 2m) (13)

10



And as left part of the congruence is not zero and u + v ≡ 0 (mod 2) and a, b 6≡ 0
(mod 2), 2 divides right part in greater power. So they can’t be equal and all values of
f(x) for odd x are distinct and then #V q

f = 2m−1

Let a be odd and b be even. Then there exists element a−1 and b = 2b′ and we
can rewrite f in the following way: f(x) = ax2 + bx = ax2 + 2b′x + a−1b′2 − a−1b′2 =
a
(
x2 + 2a−1b′x + a−2b′2

)
− a−1b′2 = a(x + a−1b′)2 − a−1b′2. And from lemma 8 and

corollary 8.1 #V q
f = #V q

x2 .
Consider congruence z2 ≡ t (mod 2m). It’s well known that odd residue is quadratic

residue over 2m if and only if it’s of form 8k + 1 [1, chapter 22]. And in case of even
t = 2k, we have z2 ≡ 2k (mod 2m) ⇐⇒ 4(z′)2 ≡ 2k (mod 2m) ⇐⇒ z′2 ≡ k′

(mod 2m−2) for some z′, k′.
Therefore we can calculate V 2m

x2 recursively in the following way:

V 2m

x2 =
2m

8
+ V 2m−2

x2 = 2m−3 + V 2m−2

x2 (14)

with initial values V 21

x2 = 2, V 22

x2 = 2 and V 23

x2 = 3.
So for odd m:

V 2m

x2 = 2m−3 + 2m−5 + · · ·+ 22 + f(3) =

= 2m−3 + 2m−5 + · · ·+ 22 + 20 + 2 = (15)

=
4
m−1

2 − 1

4− 1
+ 2 =

2m−1 − 1

3
+ 2 =

2m − 2

6
+ 2 =

⌊
2m

6

⌋
+ 2

And analogously for even m:

V 2m

x2 = 2m−3 + 2m−5 + · · ·+ 21 + f(2) = (16)

= 2
4
m−2

2 − 1

4− 1
+ 2 =

2m−1 − 2

3
+ 2 =

2m − 4

6
+ 2 =

⌊
2m

6

⌋
+ 2

Now let q = pm, with q ≥ 3.
As (2, pm) = (a, pm) = 1 there exist elements 2−1, a−1. So we can rewrite f as

complete square:

ax2 + bx = ax2 + bx+ 2−2a−1b2 − 2−2a−1b2 = a
(
x+ 2−1a−1b

)2 − 2−2a−1b2 (17)

From lemma 8 and corollary 8.1 V q
f = V q

x2 .
Using the formula from theorem 9, with d = 2, we have

#V pm

x2 =
(p− 1)

(2, (p− 1)pk+2−1)

(
pk+2−1

(
p2∗b

m−1
2 c − 1

p2 − 1

))
+

(p− 1)pk−1

(2, (p− 1)pk−1)
+ 1.

Note that (2, (p− 1)pk+2−1) = 2. Since k ≡ m (mod d) and 1 ≤ k ≤ 2, two different
cases are possible.

Odd m and k = 1:
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#V pm

x2 =
(p− 1)

2

(
p2

(
p2∗b

m−1
2 c − 1

p2 − 1

))
+

(p− 1)

2
+ 1 =

(p− 1)

2

(
p2
(
pm−1 − 1

p2 − 1

)
+ 1

)
+ 1 =

(p− 1)

2

(
pm+1 − p2 + p2 − 1

p2 − 1

)
+ 1 = (18)(

pm+1 − 1

2(p+ 1)

)
+ 1 =

⌊
pm+1

2(p+ 1)

⌋
+ 1

Even m and k = 2:

#V pm

x2 =
(p− 1)

2

(
p3

(
p2∗b

m−1
2 c − 1

p2 − 1

))
+

(p− 1)p

2
+ 1 = (19)

(p− 1)

2

(
pm+1 − p3 + p3 − p

p2 − 1

)
+ 1 =

(
pm+1 − p
2(p+ 1)

)
+ 1 =

⌊
pm+1

2(p+ 1)

⌋
+ 1.�

Corollary 11.1. Using theorems 3 and 11, we can compute the value set of trian-
gular numbers in the following way:

V 2m
x(x+1)

2

= V 2m+1

x2+x = 2m (20)

V pm

x(x+1)
2

= V 2∗pm
x2+x = V 2

x2+x ∗ V
pm

x2+x =

⌊
pm+1

2(p+ 1)

⌋
+ 1.

6 Generalizations

6.1 Rational functions

We are interested in the problem of calculating the value set of arbitrary integer-
valued rational function. It turned out that any such function is in fact an integer-
valued polynomial.

Definition 4. We say that a polynomial g(x) ∈ R[x] is almost integer-valued, if
∀ε > 0 ∃nε : ∀n > nε ∃Mn ∈ Z : |g(n)−Mn| ≤ ε.

Lemma 12.1 Let g(x) ∈ R[x] be almost integer-valued, then g(x) is integer-valued.

� By induction on degree d show that any almost integer-valued polynomial of degree
d is integer-valued. For d = 0 we have that g(x) is constant and hence it’s an integer.

12



Suppose the statement of the induction holds for d − 1, prove it for d. Consider
an arbitrary almost integer-valued polynomial g(x) of degree d, and the polynomial
4g(x) = g(x+ 1)− g(x). We get g(x) =

∑d
i=0 ti

(
x
i

)
, where ti are real, so we have:

4g(x) = g(x+ 1)− g(x) =
d∑
i=0

ti

((
x+ 1

i

)
−
(
x

i

))
=

d∑
i=0

ti
i!

((x+ 1)x . . . (x+ 1− i+ 1)− x(x− 1) . . . (x+ 1− i)) = (21)

d∑
i=0

ti
i!

(ix(x− 1) . . . (x− i+ 2)) =
d∑
i=1

ti

(
x

i− 1

)
.

Let’s prove that polynomial 4g(x) is almost integer-valued. Choose arbitrary ε > 0,
then ∃nε : ∀n ≥ nε ∃Mn : |g(n)−Mn| ≤ ε/2. Hence ∀n ≥ nε we have

|4g(n)− (Mn+1 −Mn)| ≤ |g(n+ 1)−Mn+1|+ |g(n)−Mn| ≤ ε/2 + ε/2 = ε.

Consequently 4g(x) is almost integer-valued, and then by induction it’s integer-
valued. So by theorem 1 tk, . . . t1 are integers. Suppose t0 is not integer. Since g(x)− t0
is an integer-valued polynomial, so g(x) is not almost integer-valued. Hence t0 ∈ Z. �

Theorem 12.2 Let R(x) = f(x)
g(x)

be a rational function, where f(x), g(x) ∈ R[x],

taking integer values in integer points. Then R(x) is integer-valued polynomial.

� Divide f by g with remainder, will get R(x) = pk(x) + r(x), where pk is a poly-
nomial, such that deg pk(x) = k and r(x)→ 0 when x→∞. Then pk(x) is an almost
integer-valued polynomial. And from lemma 12.1 we have that pk(x) is integer-valued.

Show that r(x) = 0. Since pk(x) is integer-valued, so r(x) ∈ Z for x ∈ Z and
r(x) → 0 for x → ∞, we have that r(x) have infinity many zeroes. But a rational
function having infinity many zeroes is identically equal to zero. �

6.2 Linear functions of several variables

Proposition 13. For a linear function f(x1, . . . , xk) = a1x1 + a2x2 + · · ·+ akxk + b
the following is true

#V n
f =

n

(a1, a2, . . . , ak, n)
.

� It’s clear that #V n
f = #V n

g , where g(x1, x2, . . . , xk) = a1x1 + a2x2 + · · ·+ akxk.
If (a1, a2, . . . , ak, n) = d > 1, then from properties of congruences, we have #V n

f =

#V
n/d
f/d .

In case (a1, a2, . . . , ak, n) = 1 there exists at least one such ai that (ai, n) = 1.
Consider that ai. Obviously we have #V n

g ≥ #V n
aixi

.
And since #V n

aixi
= n for (ai, n) = 1, we have n ≥ #V n

f ≥ n ⇐⇒ #V n
f = n. Thus

#V n
f =

n

(a1, a2, . . . , ak, n)
.�
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