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Problem 1. Generalizing Perfectness

Abstract

This problem is about generalized perfect numbers. We call a natural number
n f -perfect for some arithmetic function f , if f(n) is equal to the sum of f(d)
over all proper divisors d of the number n. The following results are obtained in
this work:

We find all f -perfect numbers for functions for arithmetic functions f(a) satis-
fying f(ab) = f(a)+f(b) and the following functions: (−1)n, in, Cn

2012 and Jordan
totient function. We find all τ+t-perfect numbers for t ∈ N∪{0,−1,−2,−22, . . . }
where τ(n) is the number of divisors of n. Also we find sufficient condition on n
to be f -perfect for f(x) = ax+ b.

We call a pair of natural numbers (m,n) amicable if n is equal to the sum of
d over all proper divisors d of the number m and m is equal to the sum of d over
all proper divisors d of the number n. We generalize this notion and consider
f -amicable pairs for some arithmetic function f . There are found all f -amicable
pairs, when f is the Jordan function or f(n) = (−1)n.

Also we generalize perfectness on other sets. For example we find all per-
fect numbers in the ring of residues. We constructed the set closed under two
operations such that all numbers of it are perfect.
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Notation

1. C,R,Z,Z+,N,P are the sets of complex, real, integer, nonnegative integer,
natural, prime numbers.

2. We adopt the usual convention of assigning the value 0 to any empty sum
and the value 1 to the any empty problem.

3. Zn is the ring of residues modulo n and ā is the residue of a modulo n.

Introduction

Any function f : N → C is called arithmetic. Recall that a natural number
n ≥ 1 is said to be perfect if it is equal to the sum of its positive proper divisors
(that is all divisors except n). Examples of perfect numbers are 6, 28 and 496.
Euclid proved that if k is a natural number such that 2k+1 − 1 is prime, then
n = 2k(2k+1 − 1) is perfect.

Generalizing this notion, we say that a natural number n ∈ N is f-perfect for
some arithmetic function f if

f(n) =
∑

d|n,1≤d≤n−1

f(d).

Thus, n is perfect if and only if n is f -perfect for f(n) = n. For another example,
note that a natural number n ≥ 1 is f -perfect for the constant function f(n) = 1
if and only if n is a prime.

Note that iff n is f -perfect then∑
d|n

f(d) = 2f(n).

Question 1

Let τ(n) denote the number of positive divisors of n (including n).
a) Prove that a natural number n ≥ 1 is τ -perfect if and only if n is a square

of a prime.
b) Find all f -perfect natural numbers n ≥ 1 for the function f(n) = τ(n)− 1.

For as many values k ∈ Z as possible, find all f -perfect natural numbers n ≥ 1
for f(n) = τ(n) + k.

Solution. We need the following lemma:

Lemma 1.1. Let n =
∏
pi∈P

pαi

i . Then
∑
d|n

(τ(d) + t) =
∏
i

(αi+1)(αi+2)
2 + tτ(n).

Proof. It is obvious that
∑
d|n
t = tτ(n). Since τ(n) is multiplicative and for a

prime p we have τ(pi) = i+ 1, so
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∑
d|n

τ(d) =
∏
i

(

αi∑
j=0

τ(pji )) =
∏
i

(αi + 1)(αi + 2)

2
.

Lemma 1 is proved.

Theorem 1.1. There is no (τ + t)-perfect number for t ≥ 1.

Proof. Assume that n is (τ + t)-perfect. We have that if t ≥ 2 then∑
d|n

τ(d) =
∏
i

(αi + 1)(αi + 2)

2
= (2− t)τ(n) + 2t. (1)

Consider t ≥ 2. Note that n = 1 is not a solution of (1). It means that τ(n) ≥
2. So (2− t)τ(n) ≤ 4− 2t or (2− t)τ(n) + 2t ≤ 4 and

∏
i

(αi+1)(αi+2)
2 ≥ 3. Since

τ(n) ≥ 2, so
∏
i

(αi+1)(αi+2)
2 have an nonunit odd divisor. Now (2−t)τ(n)+2t = 3.

Since ∏
i

(αi + 1)(αi + 2)

2
= τ(n)

∏
i

(1 +
αi
2

) = 3,

we have τ(n) = 2 and (2− t)τ(n) + 2t = 4. Now 4 = 3. It is a contradiction. So
there is no (τ + t)-perfect number for t ≥ 2.

Let t = 1. We have ∏
i

(1 +
αi
2

) = 1 +
2

τ(n)
. (2)

It is easy to check that (2) has no solution for τ(n) = 1 and τ(n) = 2. When
τ(n) > 2 the left hand side (LHS) is more than 2 and the right hand side (RHS)
is less than 2. Theorem 1.1 is proved.

Proposition 1.1. All τ -perfect number are n = p2 where p is a prime.

Proof. Let t = 0. We have

τ(n)
∏
pi

(1 +
αi
2

) = 2τ(n) (3)

or
∏
pi

(1 + αi

2 ) = 2. Note that n = p2 is solution of (3). If n has 2 or more prime

divisors or one of αi is more than 2 then
∏
pi

(1 + αi

2 ) > 2. So n = p2 where p is a

prime. Proposition 1.1 is proved.

Theorem 1.2. If n is (τ − 2k)-perfect number then k = 0 and n is a cube of
a prime or 1.

Proof. Let d(n) be the number of prime divisors of n and t = −2k. We have:
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2d(n)τ(n)

d(n)∏
i=1

(1 +
αi
2

) = 2d(n)(2 + 2k)τ(n)− 2d(n)+1+k. (4)

Since LHS is divisible by τ(n), so 2d(n)+1+k is divisible by τ(n). It means that

τ(n) is a power of 2. Now 2d(n)
d(n)∏
i=1

(1 + αi

2 ) is odd. We have two cases:

1) 2d(n)(2+2k) is odd and 2d(n)+1+k/τ(n) is even. It means that d(n) = k = 0.
So we have that n = 1, k = 0 is solution of (4).

2) 2d(n)(2 + 2k) is even and 2d(n)+1+k/τ(n) is odd. It means that τ(n) =
2d(n)+1+k. Now

2d(n)

d(n)∏
i=1

(1 +
αi
2

) = 2d(n)+1 − 1 +
τ(n)

2
.

Since 2d(n)
d(n)∏
i=1

(1 + αi

2 ) > τ(n), 2d(n)+1 − 1 > τ(n)/2. Since τ(n) is a power of

2, we have 2d(n)+1+k = τ(n) ≤ 2d(n)+1. Since k is nonnegative, so τ(n) = 2d(n)+1

and t = −1. From τ(n) = 2d(n)+1 it follows that one of {αi} is 3 and the others
are 1. We have 5 · 3d(n)−1 = 3 · 2d(n) − 1. If d(n) > 1 then LHS is divisible by
3 and RHS is not divisible by 3, a contradiction. So d(n) = 1. It means that n
is a cube of a prime. Note that n = p3, p ∈ P is solution of (4). Theorem 1.2 is
proved.

Question 2.

Find all f -perfect numbers n, where f(n) = ϕ(n) is Euler’s totient function.

Solution. Let Ja(n) = na
∏

p|n,p∈P
(1− 1

pa ) be Jordan totient function.

Theorem 2.1. 2 is the only J1-perfect (ϕ-perfect) number. And there is no
Ja-perfect number for a > 1.

Proof. It is well known [1, p. 91] that
∑
d|n
Ja(d) = na.

So we must solve na = 2Ja(n) or
∏

p|n,p∈P
(1− 1

pa ) = 1/2.

Note numerator of LHS is divisible by 2k (k = #(p : p|n, p ∈ P, p 6= 2)
and denominator is divisible by 2a if n is even and is not divisible by 2 if n is
odd. It means that n is divisible by not more then a− 1 odd primes. Note that∏
p|n,p∈P

(1 − 1
pa ) is not less then (1 − 1

2a )1+(a−1) ≥ 1 − a
2a (the last is obtained by

Bernoulli inequality). We have that1 − a
2a = 1/2 for a = 1 (and it is easy to

check that 2 is J1-perfect) and 1 − a
2a > 1/2 for a > 1. It means that there is
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no Ja-perfect numbers for a > 1 and 2 is the only J1-perfect (ϕ-perfect) number.
Theorem 2.1 is proved.

Question 3

a) Prove that if k is a natural number such that 2k+1− 2k− 1 is a prime, then
n = 2k(2k+1 − 2k − 1) is f -perfect for f(n) = n− 1.

b) Find similar sufficient conditions for f -perfectness for other polynomial func-
tions of degree 1 such that f(n) = n− 2 or f(n) = n+ 1.
Solution. Let us consider the general case f(n) = an + b where a, b ∈ N ∪ {0}
and a 6= 0.

Theorem 3.1 If p = (2k+1− 1 + 2bk/a) is a prime, then n = 2kp is f -perfect
for f(n) = an+ b.

Proof. If n is f -perfect then
∑
d|n
f(d) = a(p(1 + 2 + · · · + 2k) + (1 + 2 +

· · · + 2k)) + 2b(k + 1) = a(2k+1p + 2k+1 − p − 1) + 2b(k + 1) = 2a2kp + 2b or
p = 2k+1 − 1 + 2bk/a. Theorem 3.1 is proved.

Corollary 3.1 (Euclid). If p = (2k+1−1) is a prime, then n = 2kp is perfect.

Corollary 3.2. If 2k+1 − 2k − 1 is a prime then n = 2k(2k+1 − 2k − 1) is
f -perfect for f(n) = n− 1.

Question 4

Let f(n) = ln(n). Find all f -perfect numbers n.

Solution. It is known that ln(ab) = ln(a)+ln(b). That is why we will consider
the general case: function f satisfying f(ab) = f(a) + f(b).

Theorem 4.1 Let f(n) be function satisfying f(ab) = f(a) + f(b). Then
all f -perfect numbers are 1, p3, pq where p and q are a primes and x such that
f(x) = 0.

Proof. It is obvious that f(1) = 0. Let us show
∑
d|n
f(d) = τ(n)

2 f(n). Since

f(ab) = f(a) + f(b), f(n) = f(n/d) + f(d) for all d|n. If n is not a perfect
square then n/d 6= d for all d|n. We have τ(n)/2 pairs (n/d, d). That is why∑
d|n
f(d) = τ(n)

2 f(n). If n is a perfect square then we have τ(n)−1
2 pairs (n/d, d)

such that d|n and n/d 6= d. Also for
√
n we have: f(

√
n) = 1/2f(n) That is why∑

d|n
f(d) = τ(n)

2 f(n).

Now
∑
d|n
f(d) = τ(n)

2 f(n) = 2f(n). We have two cases:
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I. τ(n) = 4. It means that n = pq or n = p3 where p and q are primes.
II. f(n) = 0. It means that n is also solution. Theorem 4.1 is proved.

Note, that if f : R→ R and f(n) is continuous then f(x) = loga x (Equation
of Cauchy). But there are a lot of other such arithmetic functions.

For example let π be a subset of the set of all primes. Let n =
∏
pi∈P

pαi

i .

f(n) =
∑

pi|n,pi∈π
αi.

Corollary 4.1. All ln-perfect numbers are 1, p3, pq where p and q are a
primes.

Question 5

Let f(n) = (−1)n. Find all f -perfect numbers n. Study the general case that
f(n) = ωn, where ω ∈ C is a root of unity.

Solution. In this case we will consider two functions (−1)n and in.

Theorem 5.1. All f -perfect numbers are 8, p and 4p where p is an odd prime
for f(n) = (−1)n.

Proof. Let n =
∏
pi∈P

pαi

i , β is the maximal power of 2 such that 2β|n . Let us

calculate
∑
d|n
f(d):

∑
d|n

(−1)d =
∑
d|n, 2|d

1−
∑
d|n, 2-d

1 = β
∏
pi 6=2

(αi+1)−
∏
pi 6=2

(αi+1) = (β−1)
∏
pi 6=2

(αi+1).

Since 2f(n) = ±2, so 0 ≤ β ≤ 3 and β 6= 1.
1) If β = 3 then

∏
pi 6=2

(αi + 1) = 1, i.e. n = 8.

2) If β = 2 then
∏
pi 6=2

(αi + 1) = 2, i.e. n = 4p where p is an odd prime.

3) If β = 0 then −1
∏
pi 6=2

(αi + 1) = −2, i.e. n = p where p is an odd prime.

Theorem 5.1 is proved.

Theorem 5.2. Let f(n) = in and (4k + 3), (4t + 1) ∈ P. All f -perfect
numbers are 2(4k + 3), 8(4k + 3) and (4t + 1)n2, where all prime divisors of n
are in the form of 4k + 3.

Proof. Let f(n) = in. Then
1) f(n) = i, n ≡ 1( mod 4);
2) f(n) = −1, n ≡ 2( mod 4);
3) f(n) = −i, n ≡ 3( mod 4);
4) f(n) = 1, n ≡ 0( mod 4).
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Consider the following cases:
I. n ≡ 0( mod 4). 2f(n) = 2, i.e. the number of divisors that are equivalent

1 modulo 4 is equal the number of divisors that are equivalent 3 modulo 4. Let a
and b ne the numbers of divisors that are equivalent 0 and 2 modulo 4 respectively
then a − 2 = b. Let us show that n is 8(4k + 3) where (4k + 3) ∈ P. Let d be
the number of odd divisors of n (from below it follows that d ≥ 2) and k be a
maximal power of 2 dividing n. Now a = (k− 1)d and b = d, 2 = (k− 2)d, there
is only one possible solution: d = 2, k = 3.The second odd divisor is (4k+3) ∈ P.

II. n ≡ 2( mod 4). 2f(n) = −2, i.e. the number of divisors that are equivalent
1 modulo 4 is equal the number of divisors that are equivalent 3 modulo 4. Let a
and b ne the numbers of divisors that are equivalent 2 and 0 modulo 4 respectively
then a − 2 = b. Let us show that n is 2(4k + 3) where (4k + 3) ∈ P. Let d be
the number of odd divisors of n (from below it follows that d ≥ 2) and k be a
maximal power of 2 dividing n. Now a = d and b = (k − 1)d, −2 = (k − 2)d,
there is only one possible solution: d = 2, k = 1. The second odd divisor is
(4k + 3) ∈ P.

III. n is odd. Let n =
∏
pi∈P

pαi

i . Let δ(n) be a difference between the number

of 4k + 1 divisors of n and the number of 4k + 3 divisors of n. By analogy with
previous cases we need to describe all numbers with δ(n) = ±2. Let L(n) be the
number of 4k + 1 divisors of n, l(n) be the number of 4k + 1 divisors of n such
that all their prime divisors are 4t+ 1, R(n) be the number of 4k + 3 divisors of
n, r3(n) be the number of 4k + 3 divisors of n such that all their prime divisors
are 4t + 3, r1(n) be the number of 4k + 1 divisors of n such that all their prime
divisors are 4t+ 3 (1 is included).

Note that L(n) = l(n)r1(n) and R(n) = l(n)r3(n). Now |δ(n)| = l(n)|r1(n)−
r3(n)|.

So we need to estimate r1(n)− r3(n).

Proposition 5.1. If all prime divisors of n be of the form (4k + 3) then
δ(n) = 1 if n is a perfect square and 0 otherwise.

Proof. Let n =
∏
pi∈P

pαi

i . Let d =
∏
pi∈P

pβii be a divisor of n . Note that if
∑
i

βi

is even then d ≡ 1( mod 4) and if
∑
i

βi is odd then d ≡ 3( mod 4).

Lemma 5.1 Let n =
∏
pi∈P

pαi

i and all prime divisors of n are of the form 4k+3.

If at least one αi is odd then δ(n) = 0.

Proof. Suppose that αj is odd. We need to show that the number of 4k + 1
divisors is equal to the number of 4k + 3 divisors. To do it we divide all divisors
into groups such that a and b are in the same group iff a/b = pkj k ∈ Z. Consider
such group. Let g be gcd of all numbers in this group. Note that one of the
numbers gpqj and gpq+1

j are of the form 4k + 1 and another of the form 4k + 3.
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Since αj is odd, the set {1, pj, p2
j , . . . } contains even number elements. So our

group contains equal numbers of 4k + 1 and 4k + 3 divisors. So every group
contains equal numbers of 4k+ 1 and 4k+ 3 divisors. Now δ(n) = 0. Lemma 5.1
is proved.

From lemma 5.1 it follows that if n is not a perfect square then δ(n) = 0.

Lemma 5.2 Let all prime divisors of a and b be of the form (4k + 3). If
(a; b) = 1, δ(a) = δ(b) = 1 then δ(ab) = 1.

Proof. We have δ(a) = δ(b) = r1(a) − r3(a) = r1(b) − r3(b) = 1. It easy to
see that δ(ab) = r1(a)r1(b) + r3(a)r3(b)− r1(a)r3(b)− r3(a)r1(b) = r1(a)(r1(b)−
r3(b)) + r3(a)(r3(b)− r1(b)) = r1(a)− r3(a) = 1. Lemma 5.2 is proved.

Let n be a perfect square. Note that δ(p2i) = 1, i ∈ Z+, p = (4k + 3), p ∈ P.
This and n is perfect square imply δ(n) = 1. Proposition 5.1 is proved

Let n be f -perfect. From proposition 5.1 and δ(n) 6= 0 it follows that r1(n)−
r3(n) = 1. Now l(m) = 2. So m has only one prime 4k + 1 divisor p and the
power of it is 1, m/p is a perfect square and all prime divisors of m/p are in the
form of 4k + 3. Theorem 5.2 is proved.

Question 6

Let f(n) = Cn
2012. Find all f -perfect numbers n. Study the general case where

2012 is replaced by a natural number m.

Solution. We will show that for infinitely many n there is Cn-perfect number.
Theorem 6.1 Let f(n) = Cn

m. There is f -perfect numbers for m = p + 1,
where p ∈ P.

Proof. Cp
p+1 = C1

p+1 =
∑

d|p,d<p
Cd
p+1. Theorem 6.1 is proved.

Remark 6.1 There is only one C2012-perfect number - 2011.

Proof. Using Wolfram Mathematica and the following commands we obtain
it.

Div[n_] :=
n∑
i=1

(Boole[Mod[n, i] == 0] ∗Binomial[2012, i])

Dqwer[n_] := Div[n]− 2Binomial[2012, n]

Table[{i,Dqwer[i]}, {i, 1, 2012}]//TableForm
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Question 7

Consider other arithmetic functions f and find sufficient and/or necessary con-
ditions for a number to be f -perfect.

Solution. We considered such functions in questions 2 and 4.

Question 8

Recall that a pair (m,n) of positive integers is said to be amicable if n =∑
d|m,1≤d≤m−1

d and m =
∑

d|n,1≤d≤n−1

d. An example is (220, 284). For an arithmetic

function f, give a reasonable definition for a pair (m,n) of positive integers to
be f -amicable. For various arithmetic functions f, find f -amicable pairs or prove
that no f -amicable pair exists.

Solution. We introduced the following definition of f -amicable pairs.

Definition. Let f(n) be an arithmetic function. We shall call the pair (a, b)
of natural numbers the f -amicable if a 6= b and

f(b) + f(a) =
∑
d|b

f(d) =
∑
d|a

f(d).

Theorem 8.2. There is no Ja-amicable numbers.

Proof. Since Ja(n) + Ja(m) =
∑

d|n Ja(d) = na =
∑

d|m Ja(m) = ma, m = n,
a contradiction.

Theorem 8.5. Let f(n) = (−1)n. All f -amicable pairs are (8; 4p), (4p; 4q)
and (p; q) where p 6= q are primes.

Proof. We have four cases:
1) f(b) + f(a) = 0, i.e.

∑
d|b
f(d) =

∑
d|a
f(d) = 0 by analogy with the proof

of theorem 5.1 we have that a and b are divisible by 2 and not by 4. But now
f(b) + f(a) = 2, a contradiction.

2) f(b) + f(a) = 2, ie
∑
d|b
f(d) =

∑
d|a
f(d) = 2. This case was considered in the

proof of theorem 5.1. We have two different solutions 8 and 4p, p ∈ P. So we
have that f -amicable pairs are (8; 4p), (4p; 4q) where p 6= q are primes.

3) f(b) + f(a) = −2, i.e.
∑
d|b
f(d) =

∑
d|a
f(d) = −2. This case was considered

in the proof of theorem 5.1. We have one solution p, p ∈ P. So we have that
f -amicable pairs are (p; q) where p 6= q are primes.

4) Since f(n) 6= 0 ∀n ∈ N, f(b) + f(a) 6= ±1.
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Generalizations

Let A and B be the sets closed under two associative commutative operations:
additive (+) and multiplicative (·), A ⊆ B and there is e ∈ A such that ea =
a,∀a ∈ A.

Let a, b ∈ A. We shall call that a is divisible by b if there is c ∈ A such that
bc = a.

Let f be mapping from A to B.
We say that an element n ∈ A is f-perfect if f(n) + f(n) =

∑
d|n
f(d).

An element n ∈ A is called perfect if n is f -perfect for A = B and f(n) = n.

Theorem 9.1. There is only one perfect number in Zn and it is 0 if n is odd
and there is no perfect numbers in Zn if n is even.

Proof. Let a ∈ N and gcd(a, n)=d. Note that all divisors of ā ∈ Zn are
numbers āi with gcd(ai, n)| gcd(a, n). But if gcd(ai, n)| gcd(a, n) then gcd(n −
ai, n)| gcd(a, n). It means that if āi|ā then −āi|ā

I. n is odd. It means that−ā 6= ā for all ā ∈ Zn and ā 6= 0. Now
∑̄
d|ā
d̄ = 0 = 2ā.

It means that ā = 0.
II. n is even. If ā is not divisible by n

2 then −āi 6= āi for every divisor āi
of ā. By analogy

∑̄
d|ā
d̄ = 0 = 2ā, a contradiction. If ā is divisible by n

2 then∑̄
d|ā
d̄ = 2ā = 0 = n

2 , finally we get a contradiction. The theorem is proved.

Finally we construct the set with two commutative operations: additive (+)
and multiplicative (·) such that every number of it is perfect.

Example 9.1. Let A be the set such that it is additive abelian group Aa

with neutral element ea and A is multiplicative abelian group Am with neutral
element em = ea. Aa and Am both are generated by involutions and

∑
x∈Aa

= ea

and
∏

x∈Am

= em.

In particular let A = {e, a, b, c}, a + b + c = abc = a2 = b2 = c2 = a + a =
b+ b = c+ c = e,ea = a+ e = a,eb = e+ b = b,ce = c+ e = c.

Let a ∈ A. Note that all elements of A are divisors of a. Since sum of all
elements of A and a+ a are equal ea, so a is perfect.
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