PROBLEM 2: SEPARATING FUNCTIONS

Team: Russia.

ABSTRACT:

In this paper we have studied some facts about separating functions. In particular our research includes proofs of following statements:

- Part 1 of the problem was fully solved: we proved that for any tuple of positive integers exists f: such a number, that for any $t \ge f t$ can be obtained as linear combination of these integers with non-negative coefficients.
- Part 2 was also fully researched, the existence of separating function for any two positive integers x, y was proved.
- Part 3 was partially solved (subpart b for $GCD(a_1, a_2) = 2$)).

The existence of f for the case, when the tuple contains only two numbers, follows from part 2 of our research: at least one of such numbers exists because value of separating functions is defined and it is minimal among all of them. Let's assume that for any tuple containing nnumbers exists f and prove that for any tuple of n + 1 numbers f' exists. For $a_1, ..., a_n$ we'll define $b_i = \frac{a_i}{GCD(a_1,...,a_n)}$. Following definition, $GCD(b_1,...,b_n) = 1$, so exists such a f that for any $b \ge f$ b can be obtained as a linear combination of these integers with non-negative coefficients, in particular we can take b coprime with a_{n+1} . $GCD(a_1, ..., a_n)$ also is coprime with a_{n+1} because in other case $a_1, ..., a_{n+1}$ aren't coprime, that contradicts the definition of the problem. So $b * GCD(a_1, ..., a_n)$ is coprime with a_{n+1} too. Following the case of two numbers, there is f', for that any number larger or equal than f' can be obtained as a linear combination of $b * GCD(a_1, ..., a_n)$ and a_{n+1} with non-negative coefficients. But, following definition, $GCD(a_1, ..., a_n) * b = GCD(a_1, ..., a_n) * (x_1 * b_1 + ... + x_n * b_n) = x_1 * a_1 + ... + x_n * a_n$ where x_i is non-negative, so, as any number q larger or equal than f' can be obtained as some $x * b + y * a_{n+1}$ where x, y are non-negative, q can also be obtained as $x * x_1 * a_1 + ... + x * a_1 + ... + x * a_2 + ... + x * a_3 + ... + x * a_4 +$ $x_n * a_n + y * a_{n+1}$, so f', the number we were searching for, exists.

2 To begin with, we prove lemma: if $a = r_1x + r_2y$ and $a = r'_1x + r'_2y$ where x, y - coprime integers, r_i, r'_i - integers, when exists such a d - integer, that $r'_1 = r_1 - dy, r'_2 = r_2 + dx$. From $r_1x + r_2y = r'_1x + r'_2y$ follows that $(r_1 - r'_1)x = (r'_2 - r_2)y$. Left part must to divide by y, x is coprime with y so $r_1 - r'_1$ must to divide by y that means that $r_1 - r'_1 = dy$ or just $r'_1 = r_1 - dy$. After that we rewrite first equation as $dxy = (r'_2 - r_2)y$, what means that $r'_2 - r_2 = dx$ or just $r'_2 = r_2 + dx$. So lemma is proved.

Theorem: separating function for two coprime numbers is p(x,y) = xy - x - y - 1. To begin with let's prove that for any a, b coprime integers ab - a - b cannot be obtained as a linear combination of a and b with non-negative coefficients, so if for f = ab - a - b + 1 every $g \geq f$ can be obtained as a linear combination of a and b with non-negative coefficients, f will be minimal one. Without loss of generality we'll assume that x < y. xy - x - y can be obtained as y(x-1) - x. Let's assume that it can also be assumed as $r_1x + r_2y$ where r_1, r_2 are non-negative. When, following lemma, exists such a d that $r_1 = (x-1) - dy, r_2 = dx - 1$. If d is positive, r_1 is negative, else r_2 is negative, that contradicts our assumption. Part of theorem has been proved. All what's left to prove is that ab - a - b + k can be obtained as a linear combination of a and b with non-zero coefficients for any k.

At first, we'll consider the case of $k \leq xy$. Such an $r_1 \leq y$ exists that $r_1x \equiv kmody$. Following that, $r_2 = \frac{k-r_1x}{y}$ is integer, and $|r_2|$ is less than x. Then $k = r_1x - r_2y$ where r_1, r_2 are positive, and xy - x - y + k can be obtained as $xy - x - y + r_1x - r_2y = y(x - r_2) + x(r_1 - 1)$ where, as shown before, both $x - r_2$ and $r_1 - 1$ are non-negative.

The case left is k > xy. When we'll define d = kmodxy, obtain $xy - x - y + d = r_1x + r_2y$ where r_1, r_2 are non-negative, as in previous case, and xy - x - y + k will be obtained as $r_1x + (r_2 + \frac{k-d}{u})y$. So for any $a, b \ p(a, b)$ is the smallest of numbers f for what any of $q \ge f$ can be obtained from a, b as an linear combination with non-negative coefficients what means that p(x, y) is separating function.

3 We'll consider case when $GCD(a_1, a_2) = 2$. In such a case $\frac{a_1}{2}$ is coprime with $\frac{a_2}{2}$, and according to part 2 there is $k = F(\frac{a_1}{2}, \frac{a_2}{2})$, minimal among numbers for which that any $q \ge k$ can be obtained as a linear combination of $\frac{a_1}{2}$ and $\frac{a_2}{2}$ with non-negative combination. When any even $p \ge 2k$ can be obtained from a_1, a_2 with the same coefficients, and 2k - 2 cannot be obtained by such a way.

Any $m \ge 2k + F(2, a_3)$ can be obtained as a linear combination of a_1, a_2, a_3 with non-negative coefficients: let's prove it. $m \ge F(a_3, 2)$ then $m = r_1 2 + r_2 a_3$.

a) If $r_2 = 0$. Then *m* is even and greater than 2k so it can be obtained as $s_1a_1 + s_2a_2$, where $s_1 * \frac{a_1}{2} + s_2 * \frac{a_1}{2} = \frac{m}{2}$ - non negative coefficients, because $\frac{m}{2} > k = F(\frac{a_1}{2}, \frac{a_2}{2})$

b) If $r_2 = 1$. $F(2, a_3) = 2a_3 - a_3 - 2 + 1 = a_3 - 1$ according to part 2 of solution of problem. When $2r_1 + r_2a_3 \ge 2k + a_3 - 1$ and $2r_1 \ge 2k - 1$ but r_1, k are integers, so $2r_1 \ge 2k$. When also *m* is even and greater than 2k, so it can be obtained as in part *a*.

c) If $r_2 \ge 2$ when we'll change representation of m by following way: $m = (r_1 + sa_3) * 2 + (r_2 - 2s) * a_3$ following lemma from part 2 of solution, where we choose such a s that gives $r_2 - 2s$ equal to 0 or 1. After such an operation we can use part a or b.

So we have proved that whatever a_3 can be, numbers greater that $m \ge 2k + F(2, a_3)$ can be obtained from a_1, a_2, a_3 as a linear combination with non-negative coefficients, so $F(a_1, a_2, a_3) \le 2k + F(2, a_3)$. Let's prove that $F(a_1, a_2, a_3) \ge 2k + F(2, a_3)$, when we'll get that these two numbers are equal. It's enough and needed to show that $a = 2k + F(2, a_3) - 1$ cannot be represented from a_1, a_2, a_3 as a linear combination with non-negative coefficients. $k = F(\frac{a_1}{2}, \frac{a_2}{2})$, when $a = 2k + a_3 - 2$. Let's assume that $2k + a_3 - 2 = r_1a_1 + r_2a_2 + r_3a_3$, where $r_i \ge 0$. Left part is odd, so r_3 is odd too. Let's represent this equation following way: $2k - 2 = r_1a_1 + r_2a_2 + (r_3 - 1)a_3$. If $r_3 = 1$ when 2k - 2 can be obtained as linear combination of a_1, a_2 with non-negative coefficients, but it was shown before that it cannot be. If $r_3 \ge 3$ when $(r_3 - 1)a_3 \ge 2k$ what gives that $r_1a_1 + r_2a_2 \le -2$ that breaks the requirement of non-negativity of coefficients.

So we shown that any $s \ge 2F(\frac{a_1}{2}, \frac{a_2}{2}) + F(2, a_3)$ can be represented as linear combination of a_1, a_2, a_3 and $2F(\frac{a_1}{2}, \frac{a_2}{2}) + F(2, a_3) - 1$ cannot be, so $F(a_1, a_2, a_3) = 2F(\frac{a_1}{2}, \frac{a_2}{2}) + F(2, a_3)$.