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Problem 3: A Cyclic Inequality

Team Germany

Abstract

We have worked on the problems 3.1 and 3.2.
To prove the inequality in Problem 3.1, we have noticed that by

an easy substitution, it looks like a weighted Jensen inequality for the
function f : t 7→ 1

1+atk
. Unfortunately, this function is only convex

if 0 ≤ k ≤ 1, so in all other cases, one has to be more careful. In
this case, we have proved the inequality by imitating one of the proofs
of Jensen's inequality and showing that the graph of f is above the
tangent to the graph at t = 1. This su�ces because the weighted sum
of the values we want to plug into our �Jensen� inequality is 1.

As for Problem 3.2, we have given two simple examples where the
inequality signs < and > hold. One inequality sign can trivially be
achieved by setting x1 = 0 and x2 = . . . = xn = 1; for the other
sign, one sets again x2 = . . . = xn and shows that if x1 is chosen close
enough to 1 (but not equal to 1, where there will be equality), then we
will have Ck,a(x) < A(x). We have done this by calculating �rst and
second derivatives.
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For the whole problem, we make the additional assumption that k ≥ 0. This
was not given explicitely in the statement of the problem, but it can easily

be seen that it's necessary to have this condition as otherwise (for example)

the statement of Problem 3.1 would not be true: Setting a = 1 and n = 2,
we obtain the inequality

xk+1
1 + xk+1

2

xk1 + xk2
≥ x1 + x2

2
⇔ xk+1

1 + xk+1
2 ≥ xk1x2 + x1x

k
2.

Now, if k ≤ 0, then the sequences (x1, x2) and (xk2, x
k
1) are ordered in the

same direction, so by the rearrangement inequality, the same inequality holds

with ≤ instead of ≥, and we have strict inequality if x1 6= x2. Thus, for the
problem statement to be true, we have to have k ≥ 0.

Problem 3.1

Let R+
0 denote the nonnegative real numbers.

Set f : R+
0 → R, t 7→ 1

1+atk
. Then the problem statement can be formulated

as

x1f

(
x2
x1

)
+ x2f

(
x3
x2

)
+ · · ·+ xnf

(
x1
xn

)
≥ (x1 + x2 + · · ·+ xn)f(1),

the right hand side of which can be written as

(x1+x2+ · · ·+xn)f(1) = (x1+x2+ · · ·+xn)f

(
x1

x2
x1

+ x2
x3
x2

+ · · ·+ xn
x1
xn

x1 + x2 + · · ·+ xn

)
which reminds one of the weighted Jensen inequality. However, we cannot

directly apply Jensen here as f is in general not convex. In fact, deriving

twice (it is obvious that f is twice continuously di�erentiable) we obtain

f ′(x) = − aktk−1

(1 + atk)2
< 0

f ′′(x) = −ak (k − 1)tk−2(1 + atk)2 − tk−1 · 2aktk−1(1 + atk)

(1 + atk)4

= ak
2akt2k−2 − (k − 1)tk−2(1 + atk)

(1 + atk)3

=
aktk−2

(1 + atk)3
· (a(k + 1)tk − (k − 1)).
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As we only consider positive t and we have assumed that k ≥ 0, the sign of

this expression is determined by the second factor, which is an increasing and

unbounded function of t. If k ≤ 1, then both factors are surely nonnegative

on R+
0 and f is convex on R+

0 so that we can apply Jensen's inequality and

are �nished. So let us assume that k > 1 in the sequel. Let x0 be the unique
positive zero of z(t) = a(k+1)tk − (k− 1). Then f is convex for x ≥ x0 and
concave for x ≤ x0.
Consider the function g : R+

0 + → R, t 7→ f(1) + (t − 1)f ′(1) which is the

tangent to f in t = 1. As g is linear, it satis�es

ω1g(t1)+ω2g(t2)+· · ·+ωng(tn) = (ω1+ω2+· · ·+ωn)g

(
ω1t1 + ω2t2 + · · ·+ ωntn

ω1 + ω2 + · · ·+ ωn

)
.

Setting ωi = xi, ti =
xi+1

xi
with xn+1 = x1 and noting that

x1
x2
x1

+x2
x3
x2

+···+xn
x1
xn

x1+x2+···+xn
=

1, we obtain

x1g

(
x2
x1

)
+ x2g

(
x3
x2

)
+ · · ·+ xng

(
x1
xn

)
≥ (x1 + x2 + · · ·+ xn)g(1)

= (x1 + x2 + · · ·+ xn)f(1).

If we can prove that f(t) ≥ g(t)∀t ∈ R+
0 under the assumption a ≥ k − 1,

part 1 of the problem is solved. To prove this, note that since a ≥ k − 1,
one must have z(1) = a(k+1)− (k− 1) ≥ k(k− 1) > 0, where we used that

k > 1, and therefore x0 < 1. Now f is convex on [x0,∞), and as g is the

tangent to the point t = 1 of that interval we immediately obtain t ≥ x0 =⇒
f(t) ≥ g(t). On the other hand the function [0, x0] → R, t → f(t) − g(t) is
a concave function on a compact interval and thus obtains its minimum on

the boundary of this interval. But we already showed that f(x0) ≥ g(x0),
and in addition,

f(0)− g(0) = 1− f(1) + f ′(1)

= 1− 1

1 + a
− ak

(1 + a)2

=
(1 + a)2 − (1 + a)− ak

(1 + a)2

≥ a(1 + a)− a(a+ 1)

(1 + a)2
= 0

⇒ f(t) ≥ g(t)∀t ∈ [0, x0]

This proves that f(t) ≥ g(t)∀t ∈ R+
0 . As was said before, this implies part 1

of the problem.

3



ITYM 2010 Team Germany

Problem 3.2

Suppose that 0 < a < k−1
k+1 and n > 1.

Consider an n-tuple x = (x1, . . . , xn) with x2 = x3 = . . . = xn = 1. Then

Ck,a(x) =
1 + a

n

(
xk+1
1

xk1 + a
+

1

1 + axk1
+

n− 2

1 + a

)
=: L(x1)

and A(x) = x1
n + n−1

n =: R(x1).
We will now �rst show that there exists a nonnegative real number x1 such

that L(x1) > R(x1), and then we will show the existence of a nonnegative

real number x1 with L(x1) < R(x1). From now on, we write x instead of x1
for simplicity, as we won't need the n-tuple x any more. Thus, we have to

show that the function D : R+
0 → R, x 7→ L(x) − R(x), takes positive and

negative values.

One of the two claims is trivial: We have

L(0) =
1 + a

n

(
0 + 1 +

n− 2

1 + a

)
=

1 + a+ n− 2

n
=

n− 1 + a

n
>

n− 1

n
= R(0).

For the other claim, we note that L and R are twice continuously di�eren-

tiable and calculate their �rst and second derivatives: We have R′(x) = 1
n

and R′′(x) = 0, and

L′(x) =
1 + a

n

(
(k + 1)xk(xk + a)− xk+1 · kxk−1

(xk + a)2
− akxk−1

(1 + axk)2

)
=

1 + a

n

(
x2k + a(k + 1)xk

(xk + a)2
− akxk−1

(1 + axk)2

)
,

L′′(x) =
1 + a

n

(
(2kx2k−1 + ak(k + 1)xk)(xk + a)2 − 2(x2k + a(k + 1)xk)kxk−1(xk + a)

(xk + a)4

− ak(k − 1)xk−2(1 + axk)2 − 2a2k2x2k−2(1 + axk)

(1 + axk)4

)
.

Now, we have L(1) = 1 = R(1),

L′(1) =
1 + a

n

1 + a(k + 1)− ak

(1 + a)2
=

1

n
= R′(1)
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and

L′′(1) =
1

n(1 + a)2
(
(2k + ak(k + 1))(1 + a)− 2k(1 + a(k + 1))− ak(k − 1)(1 + a) + 2a2k2

)
=

1

n(1 + a)2
(
(2k + ak(k + 1)− ak(k − 1))(1 + a)− 2k(1 + a(k + 1)− a2k)

)
=

2k

n(1 + a)2
(
(1 + a)2 − 1− ak − a+ a2k

)
=

2ak

n(1 + a)2
(1 + a− k + ak)

=
2ak

n(1 + a)2
(a(k + 1)− (k − 1)) .

Since 0 < a < k−1
k+1 , we have L′′(1) < 0. Thus, we have D(1) = D′(1) = 0

and D′′(1) < 0, so D has a local maximum at x = 1. Thus, if we choose x
close enough to 1, then we will have D(x) < 0.
Thus, we have proved that D takes positive and negative values, so we can

have strict inequalities in both directions between Ck,a(x) and A(x).

5


