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PATTERN GRAPHS 

 
0. Basic definitions. 
 
Let n be a positive integer. A pattern of length n is a two-line table 

n
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naaa ,...,, 21  and nbbb ,...,, 21  are some rearrangements of the numbers 1, 2, …, n.  
Define two operations on patterns as follows 
A: replace each number a of the first line with the number that is in the a’th place (from 
left to right) of the second line, 
B: replace each number b of the second line with the number that is in the b’th place 
(from left to right) of the first line. 
We can construct an oriented labelled graph Gn whose vertices are all the patterns of 
length n, and such that for any two vertices v and w there is an A-arrow (resp. a B-arrow) 
from v to w if the pattern w is obtained from the pattern v by applying the operation A 
(resp. the operation B). 

Call the pattern 
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 unit. Denote it as ID. 

Orbit of a pattern X is the connected component of nG , which this pattern belongs to. 
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τ . We can set a bijection between the set of patterns 

and the set of pairs of permutations of equal length. Denote this bijection with equality sign. It’s 
easy to see, that operation А convert a pair ( )τσ ,  to the pair ( )ττσ , , and operation В converts a 
pair ( )τσ ,  to the pair ( )στσ , . Thus, if we define ( ) ( )XAAAAXA

k

k
43421 K= , 

( ) ( ) XYAYXA kk ==− , and ( ) XXA =0  (we define the powers of operation B in the same way), 

then ( ) ( ) ( ) ( )τσστστσττσ kkkk BAZk ,,,,, ==∈∀ . 
Call the pattern X homogeneous, if ( )baX σσ ,= , where σ  is an arbitrary permutation of degree 
n, nZba ∈, . It’s obvious to see that the whole orbit of a homogeneous pattern (call such an orbit 
homogeneous) consists of homogeneous patterns. 
Denote the set of prime numbers as P. 
 
 
1. Connected components. 
 
For every pattern ( )τσ ,=X  consider the permutation group τσ ,=XG .  
Lemma 1. The group XG  is invariant under the action of the operations A and B. 
Proof. Really, ( ) τσττστττσ ,,, 1 === −

XAG ; ( ) τσστσσστσ ,,, 1 === −
XBG . 

Lemma is proved. 
 



Theorem 1. If τσ ,  are even permutations and at least one of the permutations ψξ ,  is odd? then 
the patterns ( )τσ ,=X  and ( )ψξ ,=Y  lie in different connected components of nG . 
Proof. One of the permutations ψξ ,  is odd and belongs to YG . On the other hand, XG  is a 
subgroup of nA , i.e. it doesn’t contain odd permutations. Therefore YX GG ≠ , and the patterns X 
and Y lie in different connected components of nG . Q.E.D. 
 

Corollary 1. For every odd n the patterns 
1...5432

1...4312
n

nn −
 and 

1...5432
1...4132

n
nn −

 lie in different connected components of nG , i.e. one cannot obtain 

one from another. 
 
Lemma 2. Consider a pattern ( )τσ ,=X . If ba == τσ , , then for any integer m and n such that 

( ) ( ) Zanbm ∉/,/  ( ) ( )XBXA nm ≠ . 
Proof. Notice that ( ) ( )τσττσ ,, mmA = , ( ) ( )τσστσ nnB ,, = . 
Suppose that for some m and n the equality holds. Then ( ) ( )τσστστ nm ,, = , that is equivalent to 

the system of equalities 

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σστ
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. Hence id== τσ , where id is the unity permutation, i.e. X = 

ID – contradiction. Our assumption was wrong. Q.E.D. 
 
In other words, lemma 2 states that an arbitrary A-cycle and B-cycle have not more than one 
common pattern. 
 
Theorem 2. nG  doesn’t contain connected components of strength 2. 
Proof. Suppose that Gn contains a connected component of strength 2. Then this component has 
either A-cycle or B-cycle of length 2. Without loss of generality, we have A-cycle. Then by 
lemma 2 we have the following picture: 
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If the pattern 1 is equal to a pair of permutations ( )τσ , , then id== 2τσ , and the pattern 2 is 
equal to the pair of permutations ( )ττ , . But ( ) 22 =B , whence id=τ . Therefore the pattern is 
unit, but the unit pattern is situated in the component consisting of the only pattern – 
contradiction. Thus nG  doesn’t contain connected components of strength 2. Q.E.D. 
 

Theorem 3. Gn contains exactly 
[ ]
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n  connected components of strength 3. 

Proof. Notice that for every involution σ  there is a connected component of strength 3 in the 
graph Gn: 
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Show that there are no other connected components of strength 3 in Gn. Assume the contrary. If 
the component doesn’t contain an X-cycle (where { }BAX ,∈ ) then trivially obtain the 



component shown above. Therefore the component contains an X-cycle of length 3. Without loss 
of generality X = A. Then by lemma 2 the lengths of the other cycles are equal to 1: 
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Then pattern 1 is equal to ( )τ,id , pattern 2 is equal to ( )ττ , , and pattern 3 equals ( )ττ ,2 . But 
since ( ) 22 =B , then id=2τ . Consequently, patterns 1 and 3 are equal – contradiction. 
Therefore there are no connected component differing from the one shown above in Gn. 
The amount of required connected components in Gn is equal to the amount of involutions in Sn, 

which is equal to 
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n  (well-known fact). Q.E.D. 

 
Since the study of patterns in general case is rather complicated, let’s analyse some particular 
cases. 
 
 
2. Homogeneous patterns. 
 
Consider homogeneous patterns, which look like ( )baX σσ ,= , where σ  is an arbitrary 
permutation of degree n, nZba ∈, . If ( ) kban =,, , then we can reduce these numbers by k, 
considering the permutation kσ  of degree n / k. From now on we consider the orbits of such 
homogeneous patterns, that ( ) 1,, =ban . One can trivially prove that ( ) ( )bbaba AA σσσσ ,, += , 

( ) ( )baaba BB += σσσσ ,, . From now on we calculate permutation’s degrees modulo n, if nothing 
else is specified. 
Theorem 4. The pattern ( )lk σσ ,  lies in the orbit of the pattern ( )ba σσ ,  if and only if 
( ) 1,, =lkn , i.e. it’s homogeneous. 
Proof. Suppose we can obtain the pattern ( )ba σσ ,  from the pattern ( )lk σσ ,  using the 
operations A and B. If ( ) plkn =,, , then ( ) pban M,, , but ( ) 1,, =ban . Therefore ( ) 1,, =lkn . 
Necessity is proved. 
Suppose that ( ) 1,, =lkn . Let’s prove a preliminary proposition. 
Proposition 1. ( ) 1,; =+=∈∃ nclxkcZx .  
Proof. Divide n by all its common prime divisors with l. While dividing, take every prime in the 
maximal power it enters into n. Then we obtain some integer ( ) 1,; =′′ lnn . Consider the equality 

lxkc +=  modulo n′ . Enumerating all the values of x from 0 to ( )1−′n , one can obtain all the 
possible values of c (since ( ) 1, =′ ln ), therefore we can obtain some c1 such that ( ) 1,1 =′nc . Now 
consider the equality 11 lxkc +=  modulo n. l is the multiple of all the prime divisors of nn ′  by 
construction. Since ( ) 1,, =lkn , then ( ) 1, =′nnk . We obtain that for every prime nnp ′  

( ) 1,,1 =pkplx M , therefore ( ) 1,1 =pc . Since it’s true for every prime divisor of nn ′ , then 
( ) 1,1 =′nnc . Since ( ) 1,1 =′nc , then consequently ( ) 1,1 =nc . Thus we’ve shown that there exists 
such x1, that ( ) 1,; 111 =+= nclxkc .■ 
Thus, ( ) 1,; =+=∈∃ nclxkcZx , and ( ) ( )lclkxA σσσσ ,, = . Notice that 

( ) 1,; =−=∈∃ nzpabzZp  as well (the proof is similar to the proof of proposition 1). Then, 



since ( ) 1, =nc , we can obtain the pair ( )zc σσ ,  from the pair ( )lc σσ ,  using some operations B. 
As ( ) 1, =nz , we can obtain the pair ( )za σσ ,  from the pair ( )zc σσ ,  using some operations A. 
But ( ) ( )bazapB σσσσ ,, = . Therefore the pattern ( )ba σσ ,  lies in the orbit of the pattern 
( )lk σσ , . Sufficiency is proved. 
The theorem is proved. 
 
In other words, theorem 4 claims that all the homogeneous patterns generated by the same 
permutation lie in one connected component. 
We can calculate the quantity of patterns in the orbit of an arbitrary homogeneous pattern 
( )ba σσ ,  using theorem 4. Denote this quantity by ( )σq . Summing up the number of pairs for 
every possible GCD of n and a, obtain:  
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where pi are the maximal powers of βi entering n. For example, for Pppn k ∈= , : 
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We can also calculate the quantity of connected components of Gn consisting of homogeneous 
patterns of degree p.  
Lemma 3. The orbits of two permutations σ  and τ  of degree p are equivalent if and only if 

( ) στ ==∃ apaa ,1, . 
Proof. Suppose that the orbits of two different permutations σ  and τ  of degree p are equivalent. 
Then ( ) ( ) bapbpaba τσ ===∃ ,1,,, , and ( ) bxpxaxx τσ ==⇒=∃ ,1,1 . We obtained that the 

permutation τ  has the required form, because ( ) 1, =pbx . 
Now we will prove that all the orbits of homogeneous patterns generated by permutations 

( ) 1,, =xpxσ , are equivalent. Really, ( ) ( )( ) ( ) ( ) 1,,;,, == xbxapxbxabxax σσσσ . Since x and p are 
coprimes, then we can always find some a1 and b1 such that 
( ) ( ) ( ) ( )( )1111 ,,,

bxaxxbxaba σσσσσσ == . The correspondence is specified, therefore the orbits are 
equivalent. 
The lemma is proved. 
Using this lemma, we obtain, that the quantity of connected components of Gn consisting of 

homogeneous patterns of degree p equals 
( )
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,
, where ( )pnN ,  - the quantity of permutations 

of degree p in the group Sn. In the case when p is prime, we can calculate ( )pnN ,  (the same way 
the quantity of involutions is calculated) and the required quantity: 
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3. The properties of Gn. 
 
It’s obvious to see that Gn is Euler graph (by the criterion of Euler graph: for every vertex the 
amount of entering arrows equals the amount of exiting arrows). 
 
Theorem 5. Non-oriented graph Gn is invariant with respect to reassigning the A-edges and B-
edges. 
Proof. Introduce the map of vertices of Gn ( ) )(112 XBBAAXC −−−= . It’s easy to show that this 
map is bijection. Then for ( )τσ ,=X  we have ( ) ),(, 11 σττττσ −−=C . Act on the vertices of the 
graph with the described map and trace where the images of its edges will be. 

( ) ),(, 11 σττττσ −−=C  
( )( ) ( ) ( )( )τσσττττστσ ,),(,, 11 CBCAC −− ===  
( )( ) ( ) ( )( )τσσττστστστσ ,),(,, 1111 CACBC −−−− ===  

Thus we have that the image of every A-arrow is reversed B-arrow and vice versa. Not taking 
into consideration the direction of the edges, we obtain the graph with the similar structure, but 
with A- and B-edges reassigned, therefore Gn is invariant with respect to reassigning the A-edges 
and B-edges. Q.E.D.  
 
Theorem 6. The graph Gn is planar if and only if 3≤n . 
Proof.  It’s obvious to show that for all 3≤n  Gn is planar. Consider the orbit of the pattern 

1432
4312

 (see Fig. 1). Reduce all the A-arrows so that every A-cycles becomes one vertex. 

Then we obtain the following graph: 

, 
where vertex 1 is the A-cycle which second line was 1432 , vertex 2 – with the second line 

2431 , vertex 3 – with the line 3142 , vertex 4 – with the line 4312 , vertex 5 – 
with the line 4213 , vertex 6 – with the line 2341 , vertex 7 – with the line 

3124 , vertex 8 – with the line 1324 , vertex 9 – with the line 1243 . But this 
graph contains a section graph consisting of vertices 1, 2, 3, 5, 7, 9, which is isomorphic to the 
graph K3,3. Then by Kuratowski’s theorem graph G4 is not planar. Notice that for every 4>n  



there exists a pattern 
n
n

...51432

...54312
, which orbit is obviously isomorphic to the orbit of 

the pattern considered above. Therefore, for every 4≥n  Gn is not planar. Thus, Gn is planar if 
and only if 3≤n . Q.E.D. 
 
 
 
 
 
 



 

Fig. 1. The orbit of the pattern 
1432
4312

. 


