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PATTERN GRAPHS

0. Basic definitions.

o ) ) a, a a,
Let n be a positive integer. A pattern of length n is a two-line table =~ , Where
. b, .. b,
a,,d,,....,a, and b, b,,....b, are some rearrangements of the numbers 1, 2, ..., n.

Define two operations on patterns as follows

A: replace each number a of the first line with the number that is in thea’th place (from
left to right) of the second line,

B: replace each number b of the second line with the number that is in theb’th place
(from left to right) of the first line.

We can construct an oriented labelled graph G, whose vertices are all the patterns of
length n, and such that for any two vertices v and w there is an 4-arrow (resp. a B-arrow)
from v to w if the pattern w is obtained from the pattern v by applying the operation 4
(resp. the operation B).

1 2 .. n
Call the pattern . unit. Denote it as ID.

Orbit of a pattern X is the connected component of G, , which this pattern belongs to.
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Represent every pattern X = gb b b = as a pair of permutations (S 1 ), where
1 2 o Uhg@
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S = ga ot = +. We can set a bijection between the set of patterns
4 e 4y 1 b b, g

and the set of pairs of permutations of equal length. Denote this bijection with equality sign. It’s
easy to see, that operation A convert a pair (S t ) to the pair (t st ), and operation B converts a

pair (S t ) to the pair (S ,St ) Thus, if we define 4* (X)= ﬁéﬁg()(),

k
A (x)= Y|A" (¥)=X,and 4°(X)= X (we define the powers of operation B in the same way),
then " k1 Z A“(s.t)=f"*st)B (s.t)=ls.5%).
Call the pattern X homogeneous, if X = (S “s? ), where S is an arbitrary permutation of degree
n, a,bl 7 ,- It’s obvious to see that the whole orbit of a homogeneous pattern (call such an orbit

homogeneous) consists of homogeneous patterns.
Denote the set of prime numbers as P.

1. Connected components.

For every pattern X = (S t ) consider the permutation group G, = <S It > .
Lemma 1. The group G, is invariant under the action of the operations4 and 5.
Proof. Really, G ) =(ts.t) =(t 'ts,t)=(s,t); Gy =(s.5t)=(s,s 'st)=(s.t).

Lemma is proved.



Theorem 1. If s ,t are even permutations and at least one of the permutations X,y is odd? then
the patterns X = (S .t ) and Y = (X Y ) lie in different connected components of G, .

Proof. One of the permutations X,y 1s odd and belongs to G, . On the other hand, G, isa
subgroup of 4, , i.e. it doesn’t contain odd permutations. Therefore G, ! G,, and the patterns X

and Y lie in different connected components of G, . Q.E.D.
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Corollary 1. For every odd » the patterns and
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one from another.

n
) lie in different connected components of G, , 1.e. one cannot obtain

Lemma 2. Consider a pattern X = (S )t ) If |S | = a,|t
(m/b),(n/a)i z a"(x)* B"(X).

Proof. Notice that 4™ (s .t ):(t s t ) B'(s.t)= (s st )

Suppose that for some m and n the equality holds. Then (t "s t ): (S , St ), that is equivalent to

= b, then for any integer m and n such that

.. It"s =s : - : .
the system of equalities { .Hence s =t =id, where id is the unity permutation, i.e. X =
18t =t

ID — contradiction. Our assumption was wrong. Q.E.D.

In other words, lemma 2 states that an arbitrary A-cycle and B-cycle have not more than one
common pattern.

Theorem 2. G, doesn’t contain connected components of strength 2.

Proof. Suppose that G, contains a connected component of strength 2. Then this component has
either 4-cycle or B-cycle of length 2. Without loss of generality, we haveAd-cycle. Then by
lemma 2 we have the following picture:

A
BOi A i B
d/‘
If the pattern 1 is equal to a pair of permutations (S t ), then s =t > =id , and the pattern 2 is
equal to the pair of permutations (t )t ) . But B(2) =2,whencet =id . Therefore the pattern is

unit, but the unit pattern is situated in the component consisting of the only pattern —
contradiction. Thus G, doesn’t contain connected components of strength 2. Q.E.D.
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Theorem 3. G, contains exactly é +
i 21 Xq(n- 2k

Proof- Notice that for every involution S there is a connected component of strength 3 in the
graph G,:
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Show that there are no other connected components of strength 3 in G,. Assume the contrary. If
the component doesn’t contain an X-cycle (where X 1 {A, B}) then trivially obtain the

connected components of strength 3.



component shown above. Therefore the component contains an X-cycle of length 3. Without loss
of generality X = 4. Then by lemma 2 the lengths of the other cycles are equal to 1:

A (B A
\777A/
Then pattern 1 is equal to (id,t ), pattern 2 is equal to (t )t ), and pattern 3 equals (t 2t ) But

since B(2) =2,thent > =id . Consequently, patterns 1 and 3 are equal — contradiction.

Therefore there are no connected component differing from the one shown above inG,,.

The amount of required connected components in G, is equal to the amount of involutions inS,,
[n/2]

!
which is equal to é L

——  (well-known fact). Q.E.D.
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Since the study of patterns in general case is rather complicated, let’s analyse some particular
cases.

2. Homogeneous patterns.

Consider homogeneous patterns, which look like X = (S “s? ), where S is an arbitrary
permutation of degree n, a,b1 Z,.If (n, a,b) =k , then we can reduce these numbers by £,
considering the permutation s * of degree n / k. From now on we consider the orbits of such
homogeneous patterns, that (1,a,b)=1. One can trivially prove that A(S “s? ) = A(S “h g’ ),
B(S “s? ) = B(S a8 ) From now on we calculate permutation’s degrees modulo 7, if nothing
else is specified.

Theorem 4. The pattern (S ks l) lies in the orbit of the pattern (S “s ”) if and only if

(n,k,l) =1, i.e. it’s homogeneous.

Proof. Suppose we can obtain the pattern (S “s ”) from the pattern (S ks l) using the
operations 4 and B. If (n,k,l) = p,then (n,a,b)Mp , but (n,a,b) =1. Therefore (n,k,l) =1.
Necessity is proved.

Suppose that (n, k,l ) =1. Let’s prove a preliminary proposition.

Proposition 1. $x1 Zlc =k +Ix;(c,n) =1.

Proof. Divide n by all its common prime divisors with/. While dividing, take every prime in the
maximal power it enters inton. Then we obtain some integer n¢ (n(,l ) =1. Consider the equality
¢ =k +Ix modulo n¢. Enumerating all the values ofx from 0 to (n( - 1), one can obtain all the
possible values ofc (since (n(,l ) =1), therefore we can obtain some c; such that (c] ,n() =1. Now
consider the equality ¢, =k + Ix, modulo . / is the multiple of all the prime divisors ofn/n( by
construction. Since (n, k,l ) =1, then (k, n/ n() =1. We obtain that for every prime pln/n¢
Ixlp,(k, p) =1, therefore (c,, p) =1. Since it’s true for every prime divisor of n/n(, then

(c] ,n/ n() =1. Since (c] ,n() =1, then consequently (c] ,n) =1. Thus we’ve shown that there exists
such xy, that ¢, =k +lx1;(c1,n) =l.m

Thus, $x1 Zlc =k +1Ix;(c,n) =1, and A"(S ks 1): (S ‘s 1). Notice that

$pl Z |z =b- pa; (z, n) =1 as well (the proof is similar to the proof of proposition 1). Then,



since (c,n) =1, we can obtain the pair (S ‘S Z) from the pair (S ‘s 1) using some operations B.
As (z,n) =1, we can obtain the pair (S “,S Z) from the pair (S “,S “ ) using some operations 4.
But B’ (S “8° ) = (S “s? ) Therefore the pattern (S “s ”) lies in the orbit of the pattern

(S ks 1). Sufficiency is proved.

The theorem is proved.

In other words, theorem 4 claims that all the homogeneous patterns generated by the same
permutation lie in one connected component.
We can calculate the quantity of patterns in the orbit of an arbitrary homogeneous pattern

(S ‘s ”) using theorem 4. Denote this quantity by q(s ) . Summing up the number of pairs for
every possible GCD ofrn and a, obtain:
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where p; are the maximal powers of §; entering n. For example, for n = p*, p1 P:
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We can also calculate the quantity of connected components of G, consisting of homogeneous
patterns of degree p.
Lemma 3. The orbits of two permutations S and t of degree p are equivalent if and only if

$a|(a,p)= Lt =s.
Proof. Suppose that the orbits of two different permutations S and t of degree p are equivalent.
(a,p) = (b,p) =1,s“=t" and $x|ax =1b (x, p) =1, =t ™. We obtained that the

permutation t has the required form, because (bx, p) =1.
Now we will prove that all the orbits of homogeneous patterns generated by permutations

S x,(p, x) =1, are equivalent. Really, ((S * )a , (S ¥ )b): (s g ,(p,xa,xb) =1. Since x and p are
coprimes, then we can always find somea; and b; such that

(S “s’ ) = (s g *h )= ((s * )a' ,(s ")b' ) The correspondence is specified, therefore the orbits are
equivalent.

The lemma is proved.
Using this lemma, we obtain, that the quantity of connected components of G, consisting of

N
homogeneous patterns of degree p equals j (?’)p ) , Where N (n, p) - the quantity of permutations
P,

of degree p in the group S,,. In the case when p is prime, we can calculate N (n, p) (the same way
the quantity of involutions is calculated) and the required quantity:
["/ 7] nl
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3. The properties of G,,.

It’s obvious to see that G, is Euler graph (by the criterion of Euler graph: for every vertex the
amount of entering arrows equals the amount of exiting arrows).

Theorem 5. Non-oriented graph G, is invariant with respect to reassigning the4-edges and B-
edges.

Proof. Introduce the map of vertices of G, C(X)= 42BA'B"'(X).1t’s easy to show that this

map is bijection. Then for X =(s,t ) we have C(s,t )=t "'t "'st). Act on the vertices of the
graph with the described map and trace where the images of its edges will be.

Clst)=@ "t 'st)

Clals,t))=cls,t)=¢",st)y=B"(C(s,t))

C(Bs.t))=C(s,st)=¢"'s "t 'st)y=4"(C(s .t))

Thus we have that the image of every 4-arrow is reversed B-arrow and vice versa. Not taking
into consideration the direction of the edges, we obtain the graph with the similar structure, but

with 4- and B-edges reassigned, therefore G, 1s invariant with respect to reassigning theA-edges
and B-edges. Q.E.D.

Theorem 6. The graph G, is planar if and only ifn £3.
Proof. It’s obvious to show that for all n £3 G, is planar. Consider the orbit of the pattern

2 1 3 4
2 3 4 1 (see Fig. 1). Reduce all the 4-arrows so that every 4-cycles becomes one vertex.

Then we obtain the following graph:

2

where vertex 1 is the 4-cycle which second line was2 3 4 1, vertex 2 — with the second line
1 3 4 2,vertex3—withtheline2 4 1 3,vertex4—withtheline2 1 3 4, vertex5—
withthe line3 1 2 4, vertex 6 —withthelinel 4 3 2, vertex 7— with the line

4 2 1 3,vertex 8 —withtheline4 2 3 1,vertex9—withtheline3 4 2 1. Butthis

graph contains a section graph consisting of vertices 1, 2, 3, 5, 7, 9, which is isomorphic to the
graph K3 3. Then by Kuratowski’s theorem graph G, is not planar. Notice that for every n >4



21 3 45 ... n
there exists a pattern 534 1 5 , which orbit is obviously isomorphic to the orbit of
the pattern considered above. Therefore, for every n 3 4 G, is not planar. Thus, G, is planar if

and only if n £3. Q.E.D.
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Fig. 1. The orbit of the pattern



