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1. Blocking Sets

Let S = {(a1, b1), (a2, b2), . . . , (an, bn)} be a set of n points in the square [0, 1]× [0, 1] such
that ai 6= aj and bi 6= bj for any i 6= j. Suppose that S contains the points (0, 0) and (1, 1).

(0, 0)

(1, 1)
Call such a set acceptable.
We draw an arrow from a point (ai, bi) ∈ S to an-
other point (aj, bj) ∈ S if the following conditions
are satisfied:

i) ai < aj and bi < bj,
ii) either there is no point (ak, bk) ∈ S such

that ai < ak < aj, or there is no point
(ak, bk) ∈ S such that bi < bk < bj.

This construction gives a graph that we denote
by GS. Remark that in the obtained graph there
are at most two arrows starting at a vertex.
A directed path in GS (that is, a path following
the arrows) starting at (0, 0) and ending at (1, 1)
is called diagonal (see the figure).

We say that an acceptable set S is blocking if the graph GS has no diagonal path.

1. What is the minimum number of elements that a blocking set can have?
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2. Two acceptable sets S = {(ai, bi)} and S ′ = {(a′i, b′i)} of n points are called equivalent,
we write S ∼ S ′, if b1 < b2 < · · · < bn, b′1 < b′2 < · · · < b′n and for any i 6= j we have
ai < aj if and only if a′i < a′j. In particular, the graphs of equivalent sets are isomorphic.
Denote by pn the probability of choosing a blocking set, that is, the ratio of the number of
non-equivalent blocking sets of n points to the number of all non-equivalent acceptable sets
of n points. Calculate or estimate pn. What is the limit of this probability as n→∞?

3. Let D(S) be the number of diagonal paths in S. Estimate the arithmetic mean of D(S)
over all non-equivalent acceptable n-point sets S, and also over all finite acceptable sets.

4. What if we replace the condition ii) by ‘either there is no point (ak, bk) ∈ S such that
ai < ak < aj and bi < bk, or there is no point (ak, bk) ∈ S such that ai < ak and bi < bk < bj’?

5. Formulate and investigate N -dimensional analogs of the problem, where N > 2.

2. Separating Functions

Consider n positive integers a1, a2, . . . , an which are coprime, i.e., gcd(a1, a2, . . . , an) = 1.
Let S be the set of all linear combinations of numbers a1, a2, . . . , an with nonnegative integer
coefficients,

S = {x1a1 + x2a2 + · · ·+ xnan : xi ∈ Z, xi ≥ 0} .

1. Show that there exists a number f ∈ N such that for any integer a ≥ f we have a ∈ S.

Define F (a1, a2, . . . , an) as the minimal number f ∈ N such that S contains all integers
starting from f ,

F (a1, a2, . . . , an) = min {f ∈ N : all integers a ≥ f belong to S} .
We will call F a separating function.

2. Case n = 2. Find a polynomial p(x, y) with real coefficients such that F (a1, a2) = p(a1, a2)
for every pair of coprime positive integers a1, a2.

3. Case n = 3.

a) Show that if two of three coprime positive integers a1, a2, a3 are even, then F (a1, a2, a3)
is also even.

b) Suppose a3 ≥ F (a1

d
, a2

d
) where d = gcd(a1, a2). Prove that

F (a1, a2, a3) = d · F (
a1

d
,
a2

d
) + F (d, a3).

4. Suggest and study a generalization of the question 3.a for n > 3.

5. Try to find relations and divisibility rules for F (a1, a2, . . . , an).

3. A Cyclic Inequality

Let a be a nonnegative real number, and n a positive integer. Denote by

A(x) =
x1 + x2 + · · ·+ xn

n

the arithmetic mean of an n-tuple x = (x1, x2, . . . , xn) of positive real numbers. By definition,
a cyclic mean of order k has the following expression

Ck,a(x) =
1 + a

n

(
xk+1

1

xk1 + axk2
+

xk+1
2

xk2 + axk3
+ · · ·+ xk+1

n

xkn + axk1

)
.
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1. Show that if a ≥ k − 1 then Ck,a(x) ≥ A(x) for any n-tuple x of positive real numbers.

2. Prove that if 0 < a < k−1
k+1

and n > 1 then there exist two n-tuples x and y of positive real
numbers such that

Ck,a(x) > A(x) but Ck,a(y) < A(y).

3. Investigate the case that k−1
k+1
≤ a < k − 1.

4. Let l be a positive integer. Consider the following function

Ck,l,a(x) =
1 + a

n

(
xk+l1

xk1 + axk2
+

xk+l2

xk2 + axk3
+ · · ·+ xk+ln

xkn + axk1

)
.

In particular, Ck,1,a(x) = Ck,a(x). Find the smallest a > 0 such that the inequality

Ck,l,a(x) ≥ (A(x))l

holds for any n-tuple x of positive real numbers.

4. A Baby Chess

1. A knight is placed on the square with coordinates (a, b) of an m×n board. Two students
alternately move the knight (following the chess rules) to a square that hasn’t been visited
yet. The loser is the one who cannot make a move. Find a winning strategy for one of the
students.
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2. The analogous game with the condition that the knight leaves a ‘trace’ – four squares
that should be considered as visited (see the figure), and it is not allowed to pass through
already visited squares.

3. Study the same games for other chess pieces: a king, a queen, a rook, a bishop.

5. A Strange Network

A code of length n is a tuple A = (a1, . . . , an) of n nonnegative integers. A k-subcode of A is
a tuple (ai1 , . . . , aik), where 1 ≤ i1 < · · · < ik ≤ n. For example, (0, 2, 0, 0) is a 4-subcode of
(2, 4, 0, 6, 2, 0, 1, 0). Remark that, by definition, the code A has n!

k!(n−k)! different k-subcodes

even though some of the numbers ai’s might be equal.
Clara sends T copies of a code A of length n to Carl. However, the Network is so strange

that instead of receiving T copies of the code A, Carl obtains T different k-subcodes of A.
(What Carl knows about the Network is that, as soon as T is not too large, it never gives the
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same k-subcodes. For instance, if n = 3 and Carl receives two 2-subcodes (1, 2) and (1, 2),
then he can conclude that A is either (1, 1, 2) or (1, 2, 2).)

At the beginning Carl is given a positive integer n and a number α such that 0 ≤ ai ≤ α
for all 1 ≤ i ≤ n. Find or estimate the minimal positive integer Tmin = Tmin(n, k, α) such
that Carl can restore a code A of length n from any Tmin different k-subcodes of A. First,
investigate particular cases: k = n− 1, k = n− 2, k = [n/2], α = 1, etc.

Clara CarlNetwork

(0, 1, 0, 1) (0, 1)

(0, 1, 0, 1) (0, 0)

(0, 1, 0, 1) (0, 1)

(0, 1, 0, 1) (1, 1)

mmm... what message
did Clara send me?

1. Consider the situation when Carl also knows that all ai’s are distinct.

2. Consider the case that the numbers ai’s are not necessary distinct.

3. Suggest and study additional directions of research.

6. Min/Max Questions

1. Let S be an infinite set of points in the plane. Choose N > 2 points in S and consider

the N(N−1)
2

segments connecting them. Denote by lmin and lmax the minimal and the maximal

lengths of these segments respectively. What values can the ratio lmin/lmax take? Investigate
the following cases:

a) S is a line, show that lmax ≥ (N − 1) · lmin,
b) S is a circumference,
c) S is the boundary of a convex polygon,
d) S is an m× n rectangular grid,
e) S is an infinite triangular grid,
f) S is the whole plane, show for instance that lmax ≥

√
2 · lmin for N = 4.

2. Instead of the segments, consider the shortest curves that lie entirely in the set S. (For
example, if S is a circumference then such a curve connecting two points x, y ∈ S is the
smallest arc of S with endpoints at x and y.) Among the lengths of all shortest curves
connecting the chosen N points with each other, let cmin and cmax be the minimal and the

maximal ones respectively. Estimate the ratio cmin/cmax. Study the same cases as in the
previous question.

3. Consider all triangles with the vertices at three of the N chosen points. Estimate the

ratio amin/amax of the minimal area to the maximal area of these triangles.
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7. Friendly Polynomials

Let K be some field, and K[x] the set of polynomials with coefficients from K. Given such
a polynomial P (x) = anx

n + · · ·+ a1x+ a0 ∈ K[x], the following polynomial

P (1)(x) = (P (x))′ = nanx
n−1 + · · ·+ 2a2x+ a1

is called the (first) derivative of P . Denote by P (k) the kth successive derivative of P , it is
defined recursively by

P (k)(x) =
(
P (k−1)(x)

)′
for k ≥ 2.

We say that Q ∈ K[x] divides P if there is a polynomial R ∈ K[x] such that P = QR.
Two polynomials P1, P2 ∈ K[x] are said to be coprime if there is no polynomial Q ∈ K[x] of
degree at least 1 that divides both P1 and P2.

We will call a polynomial P ∈ K[x] of degree n friendly if it is not coprime with any of its
derivatives, that is, for all 1 ≤ k < n, the polynomials P and P (k) share a common divisor of
degree at least 1.

1. Consider the field Fp = {0, 1, . . . , p− 1} of residue classes modulo a prime p. Try to find
all friendly polynomials P ∈ Fp[x] of degree n ∈ N.

2. Let C be the field of complex numbers. Is it true that if a polynomial P ∈ C[x] of degree n
is friendly then P (x) = c(x−a)n for some a, c ∈ C? Study this question for particular values
of n (e.g., 2, 3, 4, 5), and also when n is a prime number, a power of a prime number, etc.

8. Points on Curves

1. Let be f : [0, 1]→ R be a continuous function. Find all positive integers n such that there
exists a sequence of real numbers 0 = t0 < t1 < · · · < tn−1 < tn = 1 for which the expression

0 t1 . . . tn−1 1

|f(ti+1)− f(ti)|+ |ti+1 − ti|

does not depend on i = 0, 1, ..., n− 1.
Consider the case that f is

a) a polygonal chain (that is, piecewise linear);
b) a polynomial of degree k = 2, 3, ... ;
c) a trigonometric function.

2. A sequence A0, A1, . . . , An of n + 1 points in the plane is called α-tight, where α ∈ R, if
A0 = (0, 0) and the distance between points Ai and Aj satisfies

d(Ai, Aj) ≤
(
j − i
n

)α
, for all 0 ≤ i < j ≤ n.

Let {Ai = (xi, yi)}ni=0 be an α-tight sequence of n + 1 points. A function F : R2 → R is
called C-fitting for the sequence {Ai}ni=0 if the following inequalities hold

| F (Aj)− F (Ai)− xjyi + xiyj |≤ C · j − i
n

, for all 0 ≤ i < j ≤ n.

Find all (some) numbers C such that for any positive integer n and any α-tight sequence
{Ai}ni=0 there exists a C-fitting function for {Ai}ni=0. Consider the case that

a) α = 1; b) α = 2010
2011

; c) α = 1
2
.
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9. A Topological Problem

Consider the n-dimensional Euclidean space Rn with the ordinary metric

d(x, y) =
√

(x1 − y1)2 + · · ·+ (xn − yn)2,

where (x1, . . . , xn) and (y1, . . . , yn) are the coordinates of points x, y ∈ Rn respectively. The
open ball of radius r > 0 centered at a point p in Rn, usually denoted by Br(p), is defined by

Br(p) = {x ∈ Rn : d(x, p) < r}.

For instance, open balls in the real line R are open intervals ]a, b[, open balls in the plane R2

are circles without their circumferences.

pBr(p)

an open set a convex hull

A set X ⊂ Rn is called open if, for any point p ∈ X, there exists a real number r > 0 such
that Br(p) ⊂ X. A set Y ⊂ Rn is called closed if its complement X = Rn \ Y is open. A set
Z ⊂ Rn is called convex if, for any two points p, q ∈ Z, the line segment connecting p and q
is in Z. Obviously, there exist sets that are neither open nor closed nor convex.

Introduce three operations on the subsets of Rn:

(int) the interior of a set A ⊂ Rn, denoted by int(A), is the union of all open sets X
contained in A,

int(A) =
⋃

X,
open X⊂A

(cl) the closure of a set A ⊂ Rn, denoted by cl(A), is the intersection of all closed sets Y
containing A,

cl(A) =
⋂

Y,
closed Y⊃A

(conv) the convex hull of a set A ⊂ Rn, denoted by conv(A), is the intersection of all convex
sets Z containing A,

conv(A) =
⋂

Z.
convex Z⊃A

1. Case n = 1. What is the maximal number of distinct sets that can be obtained from a
set A ⊂ R using the operations int and cl?

2. Case n = 2.

a) Show that for any set A ⊂ R2 such that int(conv(A)) 6= ∅ we have

int(conv(A)) = int(conv(cl(A))).

b) What is the maximal number of distinct sets that can be obtained from a set A ⊂ R2

using the operations int, cl and conv? Consider the cases that int(conv(A)) = ∅ and
int(conv(A)) 6= ∅.

3. Study the previous questions for n > 2.
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